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Summary. We prove an approximate zero-one law, which holds for finite 
Bernoulli schemes. An application to percolation theory is given. 

1. Introduction 

The present paper is an attempt to generalize some of the ideas recently 
developed in the particular context of the two-dimensional percolation theory. 

We denote by #x the Bernoulli probability measure which assigns to each 
site of an infinite graph G the probability x to be "occupied". In percolation 
theory (introduced in [1]) one is interested to the #,-probability of some 
events, whose prototype is the event "there exists an infinite cluster of occupied 
sites". Since these events belong to the a-algebra at infinity, ~o~, the usual 
zero-one law [2] can be applied, but it is not of help in characterizing the set 
of values of x for which the measure #x is supported by a given event in ~o~. 
Nevertheless, considerable progress has been recently made on this problem, in 
particular by proving, at least in somc cases, the relation p c + p * = l  between 
the critical percolation probabilities of two dual graphs [3], [4], [5], [8]. The 
last relation is essentially equivalent to the statement that the event "simul- 
taneous absence of infinite clusters of two opposite types" (corresponding, in a 
sense, to "critical behavior") has #x-probability zero, except for one and only 
one value of x ("critical percolation point"). 

The interest of this result is increased, in our opinion, by the circumstance 
that it has been obtained without solving the model (actually the value of the 
critical percolation point is still unknown for many graphs). 

An essential tool in getting the above results has been the introduction of a 
finite analogous problem ("sponge percolation theory", see [6], [7]); the 
proofs, however, are heavily based on geometrical techniques, typical of the 
particular nature of the problem. 

The aim of this paper is to show that some of these techniques are just a 
particular case of a general theorem, namely an "approximate zero-one law" 
which holds for local events which, in the sense we shall specify below, 
approximate the events in the a-algebra at infinity. 

The main interest of this theorem consists, perhaps, in the fact that, where- 
as the usual zero-one law holds for each measure #x individually considered, 
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the approximate version of it is a statement about the whole family {#x}~[o, 1]. 
This feature of the "approximate zero-one law", in particular, clarifies the role 
of the finite graphs in percolation theory; the last section is devoted to a new 
proof of the relation p~ + p* = 1, obtained as a corollary of our main theorem. 

Our hope, of course, is that Theorem 1 can be useful in getting new results, 
in particular in the v-dimensional percolation theory; furthermore we think 
that possible generalizations of Theorem 1 to finite volume Gibbs measures 
could be useful in the theory of phase transitions. 

2. Definitions and Statement of the Results 

We consider the space f 2 = { - 1 ,  1} r, where L is a countable set. For  every i~L  
we put Ei + [E~-] ={o)eOIo)( i )= 1 [ - 1 ] } .  We call ~ the a-algebra generated by 
the events Ei +, i~ L, and, for any K c L, we call ~K the a-algebra generated by 
the events E:~, i~K.  We define in 12 the partial order < by putting o)1 <~ if 
and only if V i ~ L  o)l(i)<o)2(i) and we call positive an event A~M if its 
characteristic function is non-decreasing. 

For  any x e [0, 1] we consider the Bernoulli probability measure 

#x = I-I Vx, 
ieL 

where v x is the measure on { - 1 ,  1} which assigns weights x and 1 - x  re- 
spectively to 1 and - 1 .  The a-algebra at infinity, ~ ,  is defined by 

KEo~ 

where ~ is the family of the finite subsets of L. Furthermore we consider the 
family of events 

~F= U ~K" 
Ke~ 

For any i ~ L we define St: ~2 ~ ~2 by putting 

(S~o))(i)= -o)(i); V k 4=i (S~o))(k)=o)(k). 

If i~L, A e M  we put 

6IA={O)~AIS~O)r 6~A={O)~f2\AIS~O)~A}; 6~A=6[Aw6EA. 

If co~6iA we call i a pivotal site for the configuration o) and for the event 
A; the set 

CA(O) ) = {i ~ L[ co ~ t~iA } 

is called the pivotal set of the configuration co for the event A; furthermore we 
shall consider the events 

(~IA=i~eLC~IiA; (~EA=iULb~A; 6A=SIAu6EA.  
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The well known zero-one law, in our setting, states that if A e ~ + ,  then for 
any x e[O, 1]#x(A ) equals either zero or one. Our purpose is to prove an 
approximate form of this statement for a suitable class of events in ~ r .  In 
order to characterize this class, we observe that the following proposition holds: 

Proposition 1. An event A e N  belongs to ~ if and only if for every i e L  6iA=0. 

Proposition 1, whose proof consists in a direct application of the de- 
finitions, suggests that the number Sup#x(6iA ) could be a measure of the 

X, i 

"distance" of the event A from N~.  Our main result is the following theorem, 
which shows that, under the additional hypothesis of positivity, the events in 
NF which are "near"  to ~ +  (in the above sense) satisfy an approximate zero- 
one law. 

Theorem 1. For every e>0,  there exists tl>O such that if A e ~  F is a positive 
event and 

V i e L ,  V x e  [0, 1], #x(biA) < t/, (2.1) 

then there exists x o e [0, 1] such that 

V x < x o - e  #x(A)<=e, (2.2) 

V x > x o + e  #x(A)> 1-~.  (2.3) 

If we replace (2.1) by the stronger condition 

V x e [ 0 , 1 ]  #x(6A)<tl, (2.1') 

we obtain a weaker theorem whose proof is much simpler than the one of 
Theorem 1. We start by proving this last statement in the next section. 

3. Proof of a Weaker Statement 

If v, # are two probability measures defined on ~ we write v < # if there exists 
a probability measure m on f2 x (2 such that 

a) m is a joint representation of v and #, i.e. V B e N, 

m{(co, w)e f2x f2 lo)eB}=v(B) ,  m{(co, w)e f2x f21weB}=#(B) .  

b) m{(oo, w)ef2xf2lco<w} > l - e .  

Remark. The above definition implies that if v < #  and A is a positive event, 
then v(A) < #(A) + ~. 

In this section we identify L with the set N of the positive integers (since L 
is a countable set there is no loss of generality in this assumption). If w e f2, 
k e N, we denote by w (k) the cylinder 

w(k)= {co e Y21V i<k  o9(i)=w(i)}; 
furthermore we put 

W(~ : (2. 
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L e m m a  1. I f  v is a probability measure on ~ ,  and C e ~ is an event such that 

~) v(C)> 1-~, 
fl) V w e C ,  V k ~ N  v(E~[w(k-1))<=X, 

8 
then v < #x. 

Proof We define recursively a measure m on f2 x f2 by putt ing: 

A) m(E-~ x E [ ) = v ( E [ ) ;  m(E + x E ~ - ) = 0 ;  

m(E; x E + ) = x - v ( E [ ) ;  m(E[ x E l - )=  1 - x ;  

B) if k > 2  and w (k-l) satisfies the inequali ty v(E~lw(k-1))<x, then, for any 
o9~ f2, 

m(E~ x E[  [w (k-1) x cotk- ll)= v(E~ [w(k- 1)); 

m(E~ x E ;  [w (k-1) x co(k- 1))=0; 

re(E; x E[  [w (k- 1) x co ck- 1)) = x -  v(E~ [w ~k- 1)); 

re(E; x E ;  [w (k-1) x co(k- 1)) = 1 --X; 

C) if k > 2  and v(E~lw(k-1))>x, then for any a , a ' ~ { - 1 , 1 } ,  and for any 
o)ff ~2, 

m(Eg x E~'lw (k- 1) x co (k- 1)) = v(E~lw(k - 1)) #x(E~'). 

It is easy to verify that  A), B), C) define a probabil i ty measure m on f2 x f2 
which is a joint  representat ion of v and #x. Fur the rmore  

m {(co, w)~(2 x f2l co_< w } >v(C)> 1 -e .  
8 

Hence v < #x. 

Proposition 2. I f  A e ~  is a positive event, #x(A)>e, g~(6~A)<e 3, then 
#~+8(A) > 1 - e. 

Proof We put #~,A( ' )=#~(  " ]A). It suffices to prove that 

< (3.1) # x , A  = # x + e ,  

(3.1) and the Remark,  indeed, imply that  1 = #x, a (A) =< #~ +8(A) + ~. We consider 
the events 

Ck={weOl#A~AIwCk-l))<e#AAIw(k-1))}; C= ~ Ck. 
k = l  

For  the p roof  of (3.1) it is enough, in view of  L e m m a  1, to prove the 
following two inequalities: 

#~,A(C)> l--e; (3.2) 

V w e C ,  V k ~ N ,  #~,a(E~lw(k-1))<x+e. (3.3) 

Since #~(A)>e, we have: 

1 1 ~ C))= L_Z_ 
where 

Dk= (i~= i Ci)('5(ff2~" Ck)" 
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The definitions of C k ,  D k imply that ~x(6~AIDk)>ektx(AlDk). By using the last 
inequality and the remark that the events D k are pairwise disjoint we get 

/G,A(O\C)  < e - 2  ~ #x(6~A~Dk)<-_e-2 ~, #x(5' A~Dk)<e-2,u~(6' A). 
k = l  k = l  

Since ,G(6rA)< ~3, we get (3.2). 
Now we observe that, for any w ~ O, k ~ N, 

/~x, A ( E ~ l  w(k- 1)):  [~x (A ~ w (k- 1))-I - 1 

�9 [#x (E2 :~ (A \ 6~A) :~ w (k- 1)) + #x(E ~ :~ 5IA) ~ w(k_ 1)']. 

I + ,  Since A is a positive event, 6 k A C E k ,  furthermore the events E~ and 
(A'.. 6[ A) :~ w (k- 1) are #:independent.  Hence 

~x ~ (E~- I w (~- 1)) = x #x ( (A' -  61 A) :~ w (k- 1)) /~x(61A :~ w (~- 1)) 
, #x(A (~ w(k- 1)) ~ #x(A c~ w (k- 1)) 

<= x + #x(6~ A ~ w(k- 1)) 

,ux( A ~ w(k- 1)) " 

The last inequality and the definition of C imply (3.3). This ends the proof of 
Proposition 2. 

Proposition 2, in particular, implies that if a positive event A ~ r satisfies 
the condition 

V X ~ I-0, 1] p x ( 6 A ) < e  3 , (2.1") 

then the statement of Theorem 1 holds. Roughly speaking, the proof of 
Theorem 1 shall be completed by proving that if for each i the #:probabil i ty 
of the event 6iA is very small, then the event A = ~. 6iA, too, has a small # :  

probability, except, at most, for a "small" set of values of x. In order to prove 
this (at first sight surprising) statement we need to improve our knowledge of 
the properties of the pivotal set. This shall be done in the next section. 

4. Some Lemmas about the Expected Size of the Pivotal Set 

The number of pivotal sites for the configuration c0 for the event A is, of 
course: 

nA(o)) = ~ )Q,a(co), (4.1) 
iEL 

where we have used the symbol )@ for the characteristic function of the event 
E. Furthermore we put 

iEL iEL 

In this section we collect some lemmas about the expectation of the 
random variable n A. We shall denote by E x the expectation with respect to the 
measure #x. We start by recalling a simple equality which was used in [5]. 
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d 
Lem ma  2. I f  A Er r is a positive event Exna=~x P~(A ). 

Proof. See L e m m a  3 of [5]. 

L emm a  3. For every A s~F, A 4= r E~(nA[A ) > log~, #~(A), where 
x' = min (x, 1 - x). 

The  proof  of L e m m a  3 is based on the elementary inequality stated in the 
following lemma. 

Lem ma  4. I f  x, e, fl E (0, 1), then 

x e  x)_log:,,e_~/~ (l-x)/3 x'le-/31 
l~ +(1-x )  fl] <xe  +(1 x e + ( 1  - x )  fi l~ fl-~ - x ~ + ( 1 - x ) f l '  

Proof. We can suppose, without  loss of generality, f i n e ;  then it suffices to 
prove that  for any e ~ (0, 1) the function 

f~ (fl) = [x c~ + ( 1 - x) fl] - i [x e log~, e + (1 - x) fl log~, fl + x' (e - fl)] 

-log~,[xo~ +(1-x )  fl] 

is non-negative for fl e [0, el.  Elementary computa t ions  show that 

d 
7 o s  (/9) = x' e [x  ~ + (1 - x) fl] - 2 [(1 - x') log~, (file) - 1]. up 

d 
The function ~Bf~(fl ) equals zero only in the point  fl'=ex'l/~l-x')<c~; it is 

positive for fl~(O, fl') and it is negative for fl~(fl',e). Since s 
-logx, x > 0, s  we get f~(fl)> 0 for fl ~ [0, c~]. This proves L e m m a  4. 

Proof of Lemma 3. First we suppose that A is a cylinder, i.e. 

A = {toe f2lV ieAco(i)=a(i)}, 

where A is a finite subset of L and a ~ { - 1 , 1 }  a. If we denote  by IAI the 
number  of elements of A, we have 

Ex(nAIA)=IAI; #~(E)= H x H ( 1 - x ) > x ' l a l ;  
i~o ' -  1(1) i 6 a -  1(-- 1) 

hence in this case Lemma  3 holds. Now we prove L e m m a  3, by induct ion on 
IA[, for an arbi t rary event A E , ~  a. If IA[=0, since A:t:r we have A = f 2  and 
both  sides of the inequality stated by L e m m a  3 are zero. Suppose IA[>0 and 
let i be an element of A. Then  A can be written, in an unique way, as 

A=(E + nA+)w(Ei - nAF) ,  

where A +, ATEgA..~.  If for every i s A  one of  the two events A +, A 7 is 
empty, then it is clear that  A is a cylinder. Hence  we can suppose A + +O, 
A7 4= O. Then  we have Vj 4= i 

61A= [E + n (A  + \ A~-)] u [E?  c~(A i- \ A+)];  
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Since 

E~(nAIA ) =Ex(n~AIA)= [-#x(A)]-t ~ #~(fi~A) 
j~A 

=[#x(A)] -~ [ ~ (X#x(6IA+)+(1-x)#x(6lAF)) 
j ~ A "-. {i} 

+ x#x (A + \ Ai- ) + (1 - x) #x (Ai-\ A+)] 

= [#x(A) ] - 1 [X#x(A +) Ex(nA: I A +) + (1 - x) #~(Ai-) Ex(nAc I Au) 

+ X#x(A+ \ A : , - ) + ( 1 - x ) # x ( A T  \A+)] .  

#~(A) = X#x(A +) + (1 - x) #x(AF ), 

X#x(A + \ Ai- ) + (1 - x) #x(A:~ "-. A +) > x' #x(A + AAi- ) > x' [#x(A +) - #~ (A~-)I, 

we get 

Ex(nalA)> X#x(A + ) E~(nA? I A+) +(1-x)#x(Ai-)Ex(nAc [Ai-)+ x'l#~(a? ) -  #x(AU)l 
X #x(A[- ) + (1 - x) #x(Ai-) 

By recurrence, we get 

x#~(A +) log x, #~(A~ +) + (1 - x) #x(AF)logx, #~ (A~-) + x' ]#~(A +) - #x (A~-)I 
E~(n AIA)>= 

X#x(A +) + (1 - x) #x(Ai-) 

By using Lemma 4 finally we get 

Ex(nA]A)>log x, [X#x(A+)+(1 - x) #x(AF) ] = log~. #~(A). 

Lemma 3, roughly speaking, implies that if an event A has a small #x- 
probability and x is bounded away from zero and one, then Ex(na]A ) must be 
large. 

The converse statement is in general false, but it holds (in the weak sense 
specified by the following lemma) for the class of events which we shall 
consider below. 

We call ~ the family of events S ~ ~ r  of the type S = A'-. B, where A, B ~ ~F 
are positive events. 

Remark. An event S e ~F belongs to 5" if and only if it satisfies the following 
condition 

(~) i f ~ 1 ~ 2 ~ ( _ 0 3 ,  O.)IES , 0 ) 2 r  , t h e n  0.)3~S. 

Proof of the remark. For any event S we put S={o~s(2", .S[3w:w~S}.  The 
event S w S is obviously a positive event and S =(S u S ) \  S. Since condition (~) 
means that S is a positive event, if (e) holds we get S ~ 5". The proof of the 
converse is left to the reader. 

L e m m a  5. If  0 < ~ < fl < 1, S ~ 5 p, then 

#x(S)dx<2[  Inf Ex(nslS)] -1 

Proof Suppose S = A \ B ,  where A, B e N  F are positive events. For any i ~ L  we 
have 6[A c E  +, 3~B c E  7 ; hence 
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3[A~b~B=O. 
Furthermore: 

b[S = (6[ A c~ S) w (6~ B c~ S). 

(4.1) and (4.2) imply that, for each co ~ S, 

n~(~o) = n'~ (~o) = n~ (~) + n~ (~o)= nA (o J) +nB (~0). 
Hence we have 

#~ (s) E~(ns IS) = (. (nA + riB) d ~  <= E~ (n,~ + riB) 
S 

#~(S) Inf E.(ns[S)<E.na+E~n B. 
xe[~, ~] 

Since A, B are positive 

Inf E,(nslS ) 
x~[~, p] 

Our use of Lemma 5 is 

L. Russo 

(4.1) 

(4.2) 

events, Lemma 2 implies that 

#~(S) dx <= [#~(A) - #~(A)] + [#p(B) - #=(B)] __< 2. 

based on the remark contained in the following lemma. 

L e m m a  6. I f  A e N  v is a positive event, for every integer k>0,  the events 

d~A={o~Aln~(co)=k}, E Ak A= {co ~ O \  Aln~(o))=k } 

belong to SP. 

Proof. It is easy to verify that, since A is positive, n~[n~], restricted to 
A [ O \  A] is a non-increasing [non-decreasing] function. Hence, if 

a~, < e)2 < o J 3 , =  = co, EA~A[oJI~A~A] ' c02 ~ A~A [~02 ~ AkE A], 

then n~(COa)<k [either nAE(C02)>k or c~:sA];  therefore c%(~A~A[c%~AkA] . E  
Hence A~A and E A k A satisfy the condition (e) of the above remark. 

5. Proof  of  the Theorem 

In this section we prove Theorem 1. Its proof is based on Proposition 2 and on 
the following lemma. 

L e m m a  7. I f  A ~ NF iS a positive event, then, for any e ~ (0, 1/2), 

1--~  

#x(6A)dx<=4[log~tl] -1/2, where t /=Max Max #x(61A). 
a i~L x~[0,  I ]  

Proof. Lemmas 5 and 6 imply that 

I #~(A~A)dx<2[ Inf Ex(n~AIA~A)] -a (5.1) 
xe(a,  a - ~ )  

On the other hand we have 

Ex(n,~gAIA~A)=[ Z #*(A~l...ikA)]-~.Z. E:,(n,j~AIA~...,kA)#~(A~,...~A) (5.2) 
il . . . ik ll ,,,~k 
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where 

Now we claim that 

All ...i A = {o9 ~ 6~ A[ CA(~O)= {il ... ik} }. 

Ex(n4alA[,...i~A)=Ex(nA~i ..... AIA[I...i~A). (5.3) 

We remark that CA(m), restricted to 5ZA, is a non-increasing function (if the 
pivotal sets are ordered by inclusion); this remark implies that, if 0)E A[,...~A, 
j~L, then Silo belongs to A~A if and only if it belongs to A[~...iA. This proves 
the claim. Lemma 3, applied to the r.h.s, of (5.3) yields 

Vii, ...,ik~L Ex(n~alA~...~ A)>logx, tl, (5.4) 

where we have used the obvious inclusion A[~...i~AcfilA. By collecting to- 
gether (5.1), (5.2), (5.4) we get 

1 - - a  

#x(A~A) dx < 2 [loga t / ] - t  (5.5) 

In an analogous way one can prove the inequality: 

i - - ~  

#x(A~A) dx < 2 [log~ 17] - 1. (5.5') 

By summing (5.5) and (5.5') we get 

1 - - a  

V k ~ N  ~ #~(AkA)dx<4[log rl] -~, (5.6) 

where 
AkA=AkAwA~A. 

On the other hand, since A is a positive event, from Lemma 2 we get 

k ~ #~(AkA)dx= ~ E~nAdx<l. (5.7) 
k = l  ~ a 

We denote by k o the integral part of �89 [log~ ~/-]1/2; (5.6) and (5.7) yield 

i - ~  k o 1 - a  ~ 1 - ~  

#~(6A)dx= Z ~ #~,(AkA)dx+ ~ ~ #~(AkA)dx 
a k = i  ~ k = k o + i  a 

k 1 - - ~  

--<�89176176 k o + l  ~ ~ #~(AkA)dx 
1 - - a  

<=2[logatl]-l/2+2[log~tl] -1/z ~ k ~ #x(AkA)dx 
k=l a 

__< 4 [log~ q] - 1/2. 

Proof of Theorem 1. Let 0 < e < 1/2. We choose t /by  putting 

4 [log~/z I?] - 1 / 2  = e,~/2. (5.8) 
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Let A s ~F a positive event such that V i e L, V x ~ [0, 1], #x(biA) <__ t 1. We put 

2 = S u p { x e [ O ,  1]l#~(A)<e}; Y~=Max {2, e/2}. 

We can suppose f f < l - e  (otherwise the statement of the theorem obviously 
holds with the choice x o =2); then Lemma 7 yields: 

2 + e / 2  1 - e l 2  

#,,(hA) dx <= I 
Yc el2 

#x(6 A) dx < 4 [log,/2 I/] - 1/z = ~4/2" 

The last inequality implies that there exists Xo~(ff,)~+e/2 ) such that 
#xo(6A)__<e3; furthermore, since x o > f f > 2  , we have #~o(A)>e. Hence Proposi- 
t ion2 implies that #~o+~(A)> 1-e .  On the other hand, since X o - e < ~ - e / 2 < 2  , 
the definition of 2 implies #~o_~(A)< e. 

6. An Application to Percolation Theory 

The relation 
p c + p * = l  (6.1) 

between the critical percolation probabilities of a pair of dual planar graphs 
has been proved, recently, in a variety of instances [3], [5], [8]. In this section, 
as a first example of application of Theorem 1, we sketch a new proof of (6.1) 
in the case of the site percolation problem on the two-dimensional square 
lattice. 

We use the same notations as in [5]; in particular A § is the event "there L, 1 
exists a (+)  chain in A L connecting its left side with its right side", where A L 
=(i~ZZllitl<=L, [i2l<=L}. 

Lemma 8. VL, V x s ( 1 - p * , p c )  , fl<_#x(A + 0 < l - f l ,  where fl is the root in [0, 1] 
of the equation x 3 [1 - (1 - x) 1/2] 17-1 - 5- 4_ 

Proof See Lemma 5 of [5]. 

Theorem 2. Pc + P* = 1. 

Proof It is easy to verify that 

6iA+,I ~-(f2\F~,,i)c~(Q F•,i), 

where Fs is surrounded in co by a ( + ) [ ( - , ) ]  circuit either 
internal to A L or intersecting A L in at most two adjacent sides}. Furthermore, 
by using translation invariance of #x, it is easy to convince oneself that 

Vi~AL,  VX ~ [0, 1], #x(F~iuFf~)>__#~(E~wE{*), 
where 

EZ [EE*] = {co e ~1 o is surrounded in co by a ( + ) [ ( - . ) 3  circuit internal to AL}. 
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Hence we have 

V x  ~ [0 ,  1 ] ,  V i E Z  2, #x(6iA[,1)<l-#x(E[wE~*). (6.2) 

Now we suppose p c + p * > l  (it is known [9] that p c + p * > l ) .  Then we can 
choose rc such that l - p *  <re <Pc. The definitions of Pc, P* imply that #~-a . s .  
there are neither infinite ( + )  cluster nor infinite ( - , )  clusters; hence: 

lim # ~ ( E [ ) =  lim #~(E~*)= 1. (6.3) 
L~ oe L~ co 

Since + -* #x(E L) [#~(E L )] is an increasing [decreasing] function of x, we have: 

V x ~ [0, 1], V L > 0, #x (El  • EL*) > min {#~ (El), #~ (EL*)}. (6.4) 

(6.2), (6.3) and (6.4) yield 

lim Max Max #~(6~A[,1)=0. (6.5) 
L~ ~ i~AL x~[O, 1] 

The last relation, together with Theorem 1, implies that if L is large enough 
there exists an interval (xl, x2)c(O, 1) such that: 

i) x 2 - x l  < p c + p * - i  ; 
ii) V x <xl ,  #~(AL+ I)< fl; 

iii) Vx>x2, # ~ ( A [ , 0 >  1 - f l ;  
where fl is the number defined in Lemma 8. i), ii), iii) are in contradiction with 
Lemma 8. This proves Theorem 2. 
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