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Abstract. We give conditions for the Bernoullicity of the v-dimensional Markov 
processes. 

1. Symbols and Definitions 

Z v is the v-dimensional lattice of the points with integral coordinates 
and K=IZV= 1-[ I, 1={0,  1}, is the space of sequences of O's and l 's  

~ Z v 
labelled with the points ~ ~ Z ~. 

The space K is compact  if endowed with the topology obtained as 
product of the discrete topologies on the factors I. 

Similarly if O C Z v we define the compact  space K 0 = I ° = I-I I. 

We shall identify the elements X ¢ K e as subsets of O: so that 
X = (xl, x2...  Xp) ~ Ko means the sequence X e Ko with values 1 in 
x l , x2 ,  . . . ,xp and 0 in O \ X .  

If X e K  and ~ e Z "  we put z ¢ X = X + ~ = ( x ~ + ~ , x 2 + ~  . . . .  ) if 
X = ( x l ,  x2 ...). The transformations z¢ : K ~ K  form a v-dimensional 
group which we denote with the symbol z; z transforms Borel sets into 
Borel sets. 

If  ~ is a Borel probabili ty measure on K which is z-invariant and 
A ( Z *' is a finite set (i.e. tat < ~) ,  then we can define Borel measures 

/~A(X,E), QA(E) on KZ,,\A 
as 

#A(X ,E)=#({Y  I Y ~ K ;  Y o g A = X ;  Yc~(Z~\A)eE})  ECKz~\A , (1.1) 

QA(E)=  Z f lA(X,E)=/2({Y! Y ~ K ,  Y ~ ( Z V \ A ) E E } )  . (1.2) 
XcA 

The Radon-Nikodym derivative, defined for X C A and Y C Z ~ \ A  

]~A (X, d Y) 
- fa (X l  Y) (1.3) 

QA(dY) 
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is the conditional probability "for finding X in A given that Y is realized 
outside A". 

In general z', z", 0', 0", ... will be v-dimensional groups of trans- 
formations on Lebesgue measure spaces (K',p'), (K",Id') . . . .  which 
preserve the measures and are isomorphic to the group ZL 

A z-invariant measure p is called a non-singular Markov process if, 
calling ~1A = {{I ~ ~ Z ~, { ¢ A and distance of { from A equals 1 }, 

i) f~(Xl  Y)>O QA --a.e. (1.4) 

ii) f A ( X [ Y ) = f A ( X I Y '  ) if Y n ~ A = Y ' c ~ O ~ A  (1.5) 

the last equation being understood QA x Q.A - -  a.e. 
Define, next, 

IX[ = number of points in X 

IX] = number of nearest neighbours in X 

i(Xt Y)= number of couples of nearest neighbours 

(~, q) such that ~ ~ X, q ~ Y 

(1.6) 

then the following very remarkable theorem holds [1]: 

Theorem 1. A r-invariant probability measure on K is a non singular 
Markov process if and only if there are two real parameters z > O, fl such 
that V X C A V Y C Z ~ \ A  (QA -- a.e.) 

zlxl e4fli(x] Y) e4/3 [x] 

fA(XI Y )=  ~ zlX,le4~i(X, lY) e,,~tx,3 ; (1.7) 
X'cA 

because of this theorem we shall refer to a Markov process as to a (z, fi)- 
Markov process. 

There is a natural two set partition ~ of the space K on which the 
above Markov processes act: 

=(Po, P1), 
Po={XIXeK, 0¢X}, (1.8) 
PI={XtXeK, 0eX}. 

If A C Z v is a finite region the 2 IAj atoms of the partition ~A = ~/ Z ~  

are of the form AA(X)= {Yt Y ~ K ,  YogA=X},  and their measure will 
be denoted 

f a ( X ) = p ( A A ( X ) ) = p ( { Y ]  Y~ K, Y o g A = X } ) .  (1.9) 
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2. Description of the Results 

It has been recently shown that the non-singular Markov chains 
(i.e. 1-dimensional non-singular Markov processes) are uniquely 
determined by their conditional probabilities [23 and are Bernoulli 
schemes for all values of (z, ~ [3]. 

In two or more dimensions the same questions are more difficult. It 
happens that the conditional probabilities do not necessarily determine 
the process which generates them [4]. It might even happen that a 
measure # with conditional probabilities (1.7) is not necessarily z-invariant 
[5]. 

It is, therefore, particularly interesting to ask whether a z-invariant 
Markov process (z, 3) is a Bernoulli scheme. 

In this paper we consider two extreme situations and show that the 
corresponding Markov processes are actually of Bernoulli type. The two 
situations correspond to the cases: 

i) 3 fixed and z ~ i; 
ii) z=e-8~,3>> 1. (2.1) 

These two cases are extreme in the sense that in case i) the conditional 
probabilities uniquely determine a measure /~ which is, furthermore, 
known to be z-invariant, ergodic and, better, a K-system [6]; in case ii) 
the conditional probabilities do not determine p [4] and it is known that 
the corresponding z-invariant ergodic measures are just two [7] (and 
furthermore they are both mixing). 

The proof will consist in showing that the partition 3 ~ is "finitely 
determinate" (see next section) in a Markov process (z, 3) verifying i), ii). 
It is known that this fact together with the fact that ~ is a z-generator for 
(z, 3) implies that (z, 3) is a Bernoulli scheme [8]. 

The finite determinability of ~ relative to (z, 3) is deduced from the 
strong cluster property 

~ [fal~A2(X~X2)-fAI(XOfa2(Xz)[<rt(A1,A2), (2.2) 
XIcAI X2cA2 

valid for IAI[, [A21 ,< oO and where t / is  defined in terms of two suitable 
non negative functions A(z, fl), x(z, fl) as well as in terms of the geometric 
objects d(A1, A2)= (distance of A1 from A2) and I~lAi] = (number of 
elements neighbouring At) as: 

~/(A 1, Az) = \(expAe-'~d(al'a2'(mintdlA~l) - \ i =  1,2 t ) ;  (2.3) 

this result is proven in Section 4, 5 for cases i) or ii) respectively. 
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A second type of results will concern the ergodic properties of the 
one dimensional dynamical system associated with a Markov process 
/~ on K and a one dimensional subgroup z s of the group z: we shall show 
that this dynamical system is a Bernoulli scheme with infinite entropy: 
many factors, with finite entropy, of this scheme are exhibited and, 
in terms of them, we discuss some conjectures. 

This paper contains the proof that (2.2), (2.3) imply that ~ is finitely 
determined with respect to (z,/3) (Section 3). Section 4, 5 contain the 
proof of (2.3). Section 6 contains some concluding remarks and the study 
of some factors of the one dimensional dynamical systems associated 
with (z,/3). 

The proof in Section 3 is very similar to that in Ref. [3] and we give 
here only the necessary changes and new definitions: we shall also freely 
use, here, the definitions conventions and lemmas of § 2 of Ref. [3]. 

After completing this work a paper by Dobruschin [17] has appeared 
in which an inequality slightly weaker than (2.2) is proven. This inequality 
would be as good as (2.2) for the proof of the isomorphism result. The 
technique of Ref. [17] is rather different from ours which allows to prove, 
besides inequality (2.2), the strong inequality (4.8). 

The results in case i) have been obtained also by Ornstein (private 
communication). 

In the paper by Dobruschin [17] an inequality slightly weaker than 
(2.2) is proven also for the case/3 small and z arbitrary; so using the 
results of Section 3 it follows that the process (z,/3) is a Bernoulli scheme 
also in this case. 

3. Finite Determinability of .~  

We assume, from now on, that the Markov process (z,/3) on K, 
denoted by if, verifies (2.2), (2.3) (hence is mixing). For simplicity we shall 
also fix v = 2. 

More generally if (K',/g) is a Lebesgue measure space and z' is a group 
of measure preserving transformations of K'  and if ~ '  is a partition of K' 
we shall call the couple (~', z') a process on (K ' , / ) .  Thus a Markov 
process could be regarded as a process (~, z) on (K, p). 

Definit ion.  A process (N, z) will be called a weak Bernoulli process 
of exponential type (wbe-process) if there is a function F(e) : R + ~ R  + 
such that lira F(e) = 0 and, for any two disjoint regions At, A2 C Z 2 the 

~ - ~ 0  + 

two partitions 
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are such that 

~ [#(qtnqz)-P(ql)P(q2)[ <F(~a~a2), 
q l  • *~A1 1:/2 ~ "~A2 

where  ,l)e 
d(A1, A2)= distance of A1 from A2, 

1~1 AI = number of points ~ in Z 2 neighbouring A and ~ ¢ A.  

If (N', -c'), (~", C) are processes on (K', p'), (K", p") respectively we shall 
consider couples ~, T of isomorphisms of (K', #') and (K", p") into the 
unit interval with Lebesgue measure (X, m) and then define 

d((~', z'), (~", z")) = sup inf  ~ D(~(z'~'), tI'(z~")), 
A q~,"P I J l ]  ~eA 

where the sup is taken over the finite squares A centered at the origin [9] 
and, if N and ~ are two partitions, each with n sets, of the same measure 

space (K, ~t), D(N, 2) = ~ p(P~AQi). 
i=1  

Let us define a useful family of subsets of Z2: 

a) A = finite square = {~1~ • Z2 al < ~l < bl, a2 < 42 < ba} with at, bi 
integers; i = 1, 2,  

b) 3 o = {~1~ e Z 2, I~l -<_ n, i = 1, 2}, 

c) A.={~t~•Z2, O<=~i<=n-l,i=l, 2}, 
d) if A is the set in a) above we put 

A - = { ~ [ ~ • Z  2 either ~ a < a l  or ~ l < b l  and ~2<az}, 

e) A. = A ° n {0} -, 
f) if x • Z 2 and A is as in a) above we put 

x + A = { ~ I e e Z  2, xi+ai<=~i<=xi+bi i = 1 , 2 } .  

If N, .~ are partitions of the same measure space and a is a set we define: 

E(~) = - ~ p(p)logp(p), 
p~#  

E(~/a)=- Z p(pna) log #(pna)_ 
, ~  . ( a )  ~(a) ' 

E(~/~) = E ( ~  v 3 ) - E ( ~ ) =  - Z ~ p(pnq) log p(pc~q)) 
q~ p ~  P(q) 

= ~ #(q)E(~/q). 
qE.~ 
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Definition. If (7,  z) is a process on (K,/~) we define 
E(7,  z) as 

the entropy 

The limit in the r.h.s, is obtained monotonically (by decreasing). We can 
now give the following important definition: 

Definition. A process (7' ,  z') on (K', if') is finitely determined if, 
given e > 0,one can find 6~, > 0 and a finite square A ~ such that ifa process 
(~fi, ~) on (K, fi) has the properties 

i) 

ii) 

then 

d( V V h t<'t, 
\¢~A ¢~A ~ / 

IE(7', z') - E(~,  7tl < fit, 

4 ( 7 ,  ~), ( 7 ' ,  ~')) < e . 

We shall prove the following theorem: 

Theorem 2. A (w.b.e.)-process is finitely determined. 

We assume the reader familiar with the paper [3]: from this paper 
we take the Lemmas 1, 2, 3, 4 and use them here: We only remark that 
these lemmas are simple general consequences of the definition of 
e-independence. 

Lemma 5. Let 7 ,  ~ be partitions of a measure space (K, #). Given 
e > 0 there is a fi(e) such that E(~/~)  > E(7)  - 5(e) implies 7 ± ~ .  

Proof. See [11]. 

Lemma 6. Let n > O; if (~', z') is a process on (K', #') 

L ~  cx~ CeAr7 c~ A ° 

(3.1). 

and the limit is approached monotonically (by decreasing). 

Proof. Call J'~ = V z~7' and observe that, i fL  is a multiple of n: 
¢~An 

lira V ~-.oo L G ~  ) '  
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where AL is the set of points in AL with coordinates divisible by n. We 
order lexicographically the points ¢ • AL and we can say that 

\ ~  AL / 1 i \ i = 1 

dividing by L 2 and observing that the bulk terms in the sum tend as 
L-+ ~ to the limit in the r.h.s, of (3.1) we obtain the desired result. 

Lemma 7. Let ~ be a partition and let ~1 = V z¢~, 
~EAL 

~'= V ~c ~, ~=  V ~ .  
~e AO n A £  {E A £  c~ (AOn + m -  A°n) 

Let 1 > e > O, and let 5(0 be as in Lemma 5. Suppose 

E(2~,/~) < L 2 E(~,  z) + eS(e) . (3.2) 

Then there exist ~ c= ~ such that 

ii) ~ / q 2 ~ / q  ~ q•~.~.  

Proof. Lemma 6 implies that 

L 2 e ( ~ ,  z) < E (~ /~ .  v ~)  < E ( ~ / ~ ) ,  

Lemma 5, implies that either 

o 0 ~ , / q 2 ~ / q  

o r  

fl) E(~l /q/~/q)  < E(~l/q) - 5(0. 

If fl holds for q • 2 2 and #( ~ q]=> e, then 
\q  ~2 / 

q ~  , ~  #(q) 

= ~ u(q)(E(~I Iq) - E(~'x tql~lq))  
qe~ 

> ~ P(q)cS(O>eS(O, 
q~ ~2 

which contradicts the assumption. 
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Define the function K(e) as 

F(16e-  ~r(~')=e 2 . (3.3) 
Then: 

Lemma 8. Assume (~, z) is a w.b.e.-proeess on (K, l~) and let 1 > ~ > O. 
~ K  

Let H <  e 2 with K =K(1,~ 2) (see (3.3)). There exist n*, tl >0 such that 
if (~', z') is a process on (K', if) and 

i) d V V r~N') < q, (3.4) 

ii) IE(~, z) - E(¢', r')l < ~/, (3.5) 

then, if k = (K, K) ~ Z z and e = (1, 1) e Z z, 

V z~ ~'-L~ V z ~ '  (3.6) 
~ k  + AH CeA 

for all finite subsets A C (An+K + e)-. 
Identical results and estimates hold if the role of the axis 1 is inter- 

changed with the role of axis 2. 

Pro@ Call 

~ e +  A H  + z< ~e(k  + AH)  

= V ~ ,  ~ = V ~ .  
~eAO c~(e+ A n  + K) - ¢~ (A°n+m-A° ) ra (e+  A n  + K) - 

The choice of K, H implies that ~2 -L1/9 ' ~ -  Fix n = n* so large that 

E(N,/.9.) ~ (K + H)ZE(~,  r) + e2/9 6(ez/9). (3.7) 

By (3.7) and (3.4) we can also guarantee, for ~/small: 

E(~;/~')  < (K + H) z E(N, r) + e2/9 ~(e2/9), 

and this, together with (3.5), implies for 1/small enough: 

E(N'~/~') < (K + H)2E(N ', z') + e2/9 fi(ez/9). (3.8) 

Choose t/so small that i) and g~2J2/9~  imply ¢~.12/9~ ' ;  Lemma 7 and 
(3.8) imply the existence of ~[ _c_ ~' such that 

a) /~'(~i q)> 1 - ~ e  z , 

b) ~,/q g~/9 N,/q V q e ~'~ . 
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Therefore  L e m m a  4 applied to .~', N', N;  implies 

~ _U ~t~ ,~' v ~1', 

and this holds for all m > O. 
If 5 e' is a part i t ion refined by ~'  v N'  we find 1 

5-' IV(pc~s)-V(p)V(s)l < ~ ~ IV(pc~r)-V(p)V(r)I<~ 2. 
pe~ ' z  sE5 °' p ~ # ~  r e .~ ' v  ~t' 

Hence  using again the just  quoted  proposi t ion:  

N ; 2 5  p' , 
and this proves the lemma. 

Lemma 9. Assume (~ ,  ~) is a (w.b.e.)-process on (K, I~) and le~ 1 > e > O. 
There exist nl > O, e/20 > I />  0 so that if (~' ,  "c') is a process on (K', #') 
with the properties: 

i) d(~VlT:¢#' ~AnlV 1~..~')'(,, (3.9) 

ii) IE(#,  *) - E (# ' ,  z')l < t/, (3.10) 

then there exist sequences {N~}, { ~ } ,  ~ e Z2+ of  partitions of  (X,  m) and a 
positive integer n a > 0 such that 

4V ",#t=d(V VAcz + 
\~EA ] \ ~ A  

A D A ~ ,  (3.11) 

=aV V A C Z2+ , A D A.~ , (3.12) 

D(~¢, #~) < e n 2 , n>_n z . (3.13) 
~eA,~ 

Proof. Let H = e 2 and let K > K(1/9(~/20) 2) (c.f.r. (3.3)) so large that  
K e 

K +------H < 64-" Let tl, n* be the numbers  provided by Lemma 8 corre-  

sponding to e/20 instead ore. Let  n I = n ,  + H + K. 

1 We use here the following simple consequence of the definition ore-independence: 
If ,~ and ~ are partitions of (K,#) and if ~ .L~,  then ~ ~ ]#(pnq)-#(p)#(q)[<3e.  

Conversely if ~ ~, ]#(pcaq)-#(p)p(q)l <~2 it follows that ~ M ~ .  
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The assumptions on (~, ,) imply V T{N_ff/2°g ~ (actually they 
~ek + A~ 

imply-~- -independence rather than e/20-independence, but this is 

not needed). Furthermore Lemma 8 implies 

V ~,_~/2o~,. 
¢ek+AH 

Let No, N; be partitions of (X, m) such that 

d ( & )  = d (¢ ) ,  d (2 ; )  = d (~ ' ) .  

Because of Lemma 3 we can find partitions ,~ ,  ~ of (X, m) with ~ E An + k 
such that 

~e Al~r + k ¢ek + At-r 

~ k  + AH ~ k  + AH 

and 
D(~¢,~)  < 5H 2f -  = f - H  2 (3.14) 

¢~+An 20 4 " 

Define N¢, N~ for ~ e An+ K, ~ =I= 0 ~ ¢ k + A~/so that (3.11), (3.12) hold for 
A= An+K. Formule (3.14) implies: 

__< 4K(K + H) + ~ H: E D(~,  ~) 
~ A H + K  " - I -  

=(K+H)2 ~(H+K) 2 + K + H  

< e(K + H) 2 . 

Let n 2 = (K + H). Cover the set ZZ+ with a sequence {A(])} of squares 
which are translates of AH+ K and label them as in the picture. 

The corridor of width K in A(j) will be denoted as F(j). F(j) is an 
appropriate translate of An+K-- (An + k). We call A(j) = A(j)-  F(j), 
A ( 1 ) = k + A  n. We now assume, inductively, that N ¢ , ~  have been 

N N 

constructed for ~e U A(K) so that (3.11), (3.12) hold for A =  ~ A(K) 
K = I  K = I  

and also 

D(~¢, ~ )  < Ha ~/4 j = l , 2  .... ,N .  (3.16) 
~A (j) 
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The definition of (w.b.e.)-process and the choice of K imply that 

5 : 6 : 

2 : 4 

1 : 3 : 
: I 

269 

K H 

V ,.~ ~i~ Jr /2  0 V "C~ ~i~ (3.17) 
~eA(N+ 1) N " 

~e U A(K) 
K = t  

here too the definitions imply ~-  -independence. Lemma 8 and 

translation invariance implies 

V z~ ~ ' $ 2 °  V z ~ ' .  (3.18) 
~eA(N+ 1) N 

~e U A(K) 
K = I  

Furthermore (3.9) and translation invarianc¢ imply 

d V z¢~, V z~ ' )<e/20.  (3.19) 
(~eA(N + 1) leA(N+ 1) 

We now use Lemma 3 by choosing ~o and , ~  as 

V V (3.20) 
iv N 

~ O A(j) ~ U A(j) 
j = l  j = l  

Then Lemma 3 implies the existence of partitions ~¢, ~ ~ e A(N + 1) 
such that denoting (~, ~) either (~, z) or (~', z'): 

d( y ,~,v V ~,]=d( y ?¢~v V ,-7-,~), (3.21) 
~eA(N+ 1) ~eA(N+ 1) 

A 
"= t \ s=~ 
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and 

' e (3.22) D(~, ~ )  < U ~ ~-. 
~eA(N+ 1) 

Hence (3.22) implies that (3.16) holds for N + 1. 
Furthermore we define ~ , ~  for ~ F ( N +  1) so that (3.11), (3.12) 

N+I 
hold for A = ~) A(j). 

j= l  
Finally we check (3.13): let j (K + H) __< n < (] + 1) (K + H), j > 1; then 

~An  s:A(s)CAn ~A(s) ~.~0 

where ~ is a boundary strip (~  = 0 if n is divided by (K + H)). The sum 
over ~ E ~ can be split in two parts: the part coming from the ~ ~ A (r) 
for some r and the part coming from the ~ ~ F(r) for some r. There are, 
at most, 4Kn ~'s of the second type while the ~'s of the first type can be 
collected into groups of ~'s belonging to the same A (r): there are at most 

2n 
- -  such groups. Hence since (3.22) implies 
K + H  

D(~¢,~)<=4K(K + H) + ~ H 2 , 
~ A (s) 

n(2, ,  ~3 <= 4 H~ ; Z 
leA(r) 

it follows, remembering that 

j ( H + K ) < n < ( i + I ) ( H + K ) ,  j>__l, 

D(~,~)=< 4 K ( K + H ) + ~ - -  ]2+8K.+  H 2 2.  
~eAn K + H 

4K e H 2 .~ 8K ~ 2H z n2 
= j 2 ( K  + H)2 K ~ -  + 4 (K + H) 2/  + -  n2 + n 4 n(K + H) 

<nZ (. 4K e 8K ~ 2H 2 
= .K+-~H- + 4  + K + H  + 4 ( I (+H)  2] 

2 /4e e 8e e )  
<n 17; + + + 2 }  <enZ" -£ 

\ oq 

A corollary of Lemma 9 is Theorem 2 from which one can deduce the 
fact that (2, r) is a Bernoulli scheme (see [8]): one has to suitably adapt 
the rest of the proof of [3] using the generalized versions of the one 
dimensional theorems of Rohlin and McMillan [8]. 
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4. Proof of (2.2), (2.3) when z <~ 1 

In this section we shall consider the space J of the functions defined 
on the set 2 ;  of the sequences of integers X = {n¢}, ~ E Z ~ n¢ = 0, 1 such 
that IX[ = ~ n¢ < o9 ; we think of these sequences as finite subsets of Z * 

with multiply occupied sites. We put X ! = I~ n~! and Jf = set of ~ e Z ~ 

such that n¢ > O. ~ x  
If )°(4) is a function on Z * we set 

2(X) = ~ 2(~)"~, X ~ 2 ; .  (4.1) 
~sX 

The following Theorems 3 and 4 are known to hold [12] : 

Theorem 3. There exists a function q)y ~ j such that for all finite A' s 
in Z ~ 

qoT (x)  
e '*~[xl z Ixl 2(X) = exp ~ z Ixl 2(X) (4.2) 

XcA -~ca X !  ' 

provided max]z2(~)[<=Zo(fl), where Zo(fl) is a suitable function of ft. 

Furthermore the function q~r has the followirgt properties: 

i) ~oT ( x )  = Q)T (~ .j_ X )  • ~ ~ Z ~, (translation invariance) , 

ii) ( i f (X) is z and 2 independent, 

tq°r(x)[ Zlo xl < A(fl) e -~(/~)d(A'A2) . iii) Z X! (4.3) 

A proof  of this theorem can be found in [12] (in this paper, however, 
there is a combinatorial  mistake so that several factors of the form X!  
are missing; for convenience of the reader we give in appendix a short 
proof  of Theorem 3). 

Theorem 4 . / f  z < Zo(fl) e -16[~[ the .functions (1.7) uniquely determine 
the measure associated with the process (z, fl). Furthermore the measures 
f a(X) of the atoms of ~A (see (1.9)) are given by 

Z e4MXuTIzIXuT I 

fa(X)  = lim TcM\A X C A (4.4) 

YCM 

where M is a square, concentric with A, and with side tending to infinity. 
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This theorem is a s tandard result in statistical Mechanics, see [2]. 
To  prove the inequali ty (2.2) we write 

e4#[Tle4MXlzIXtzITle4Bi(XlT) 

fa(M)(X) = TcM\A ' (4.5) 
e4~[Ylz Irl 

YcM 

hence, introducing the function 

"~x(~) = e41~i(XlO < e l6  l # l  (4.6) 

we can apply Theorem 3 to the regions M \ A  and M and, remarking that 

2x (0  = 1, if ~ ¢ 81A (i.e. if ~ is not adjacent to A), we find 

f(AM)(X) = zlXt e+4~txl 

o r ( y  ) zlrl + ~ - - - -  • exp - 
Y Yc~A:~O Yc~O1Ae~O 

~cM YcM\A 

q~r(y) zLrl('~x(Y)- 11t 
Y! "I 

and, if Z<Zo(fl)e -161pt, in view of (4.3), the limit as M ~ m  in this ex- 
pression does not  offer difficulties and one finds: 

f A(X) = Z ixl e +4atx~ (4.7) 

( V Y! qor(Y)y[ ) (pT(y)  z trl + ~,  - -  zWtO.x(Y  ) -  1) . • exp - 
gc~A.#~ Yc~OIA*O 

A straightforward computa t ion  and an application of ii), iii) in Theorem 3 
together with (4.6) leads to the final estimate:  

[ fA~'i2(XlwX2) - t < (.4 min 181 Air e -~'(p)a(A''A')) - 1 (4.8) e x p  
fA,(Xl)  fA,(X2) = ~ ~ , 2  

valid for Alr~A24=O X1CA 1 X2CA 2. It is obvious that (4.8) implies 
(2.2), (2.3). 

5. P r o o f  of  (2.2),  (2.3) in the Case  z = e -  so,/~ ~> 1 

Note  first of all that  the following theorem holds: (cfr. 7) 

Theorem 5. If  z = e -s~ and fl is large enough, there exist only two 
ergodic and z-invariant measures associated with the process (z, fl). They 
will be denoted 12+ and 12_. 
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Furthermore the measures f ; (X) ( f  2 (X)) of the atoms of ~ A (see (1.9)) 
are given by (see (1.6)) 

e4~[Tl e4~[X] zlXl zlTl e 411i(xl T) 

TC M\A 
f+(X)  = limo~ fA+(M)(X)= lira T~0rM (5.t) 

M ~  ~ e'¢l~[Y]z IYI ' 
YcM 

YD~F M 

where M is a square box with the same center as A and such that A C M; 
~[ M is the inner layer along the boundary ~ M. 

Similar relation holds for f f  which is calculated on an increasing 
sequence of square boxes M1 C M2 C ecc. using a formula similar to (5.1) 
in which the sets T, Y are subject to the restriction that T c ~ [ M = O ,  
Y n ~ [  M=O. 

We give now an alternative way of describing the configurations 
X E K o, X = {xt...Xp}. For each point x ~ X we construct a unit square 
with center x. The collection of all such squares forms a region; its 
boundary is a set of closed connected lines i.e. contours 71, 72... 7, which 
uniquely determine X. 2 The lines 71... 7, are, by construction mutually 
non intersecting or, as we shall say, compatible. Let O(y) be the set of 
lattice points inside the outer boundary of ?'. Let us write, for a given 
configuration X, F(X) - {~1---7,} (since we identify X with the collection 
of the associated contours {?~,.. ?,}). Among the contours {71, Y2 ... 7,} 
- F ( X )  associated with X we call "outer" those which can be connected 
to the boundary of O by a broken line without crossing other contours. 

We can now write (5.1) in terms of contours i.e. 

E e_2#[r(XuT)] 
TcM\A 

f f ( X )  = Mlimooff(M)(X)= lim TD~;M (5.2) M-~oo ~ e-2/31r(r)l ' 

YcM 
Y30E M 

where [F(X)] = ~ [7t, and [?l = length of the contour 7. In order to 
~F(X) 

prove (2.2), (2.3), we first give, for this new setting, some technical results 
similar to the ones in Section 4. 

Let J be the space of the real valued functions defined on the set ~o 
of finite collections of contours F - -  {n~,~ 7t, n~272, -.., n~sT~}, where now 
71 ..-7s are allowed to be incompatible and nT, is the multiplicity of the 
contour 7i. 

2 From now on we suppose that one of the two "boundary conditions" 

T D a [ M ,  Y ~ O [ M  or Tc~3[M=O, Y n ~ ? [ M = O  in(5.1) isfixed. 
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Let/~ be the set composed ofalt distinct elements ofF, each taken only 
once. We put Irl-- ~ n~lT[, N(F)= ~, n :  

F ! = l ~ n , ! ,  and J = { t p l t p e J ,  sup Iw(F)t<~,Vn}. 
~eP F:N(F)=n 

Let now X be a character function on ~o, i.e. a function on ~o such that 
Z(F) = I~ Z(Y) ~', and define O ~ d  by: 

- 2 8  X tYil 
o(F) = e ~,~r 

for F! = 1 and F = {7~ ... ?~} = set of compatible contours i.e. V 7i, 7j ~ F 
06,3n0(~ 6) = 0; 

o(F)  = 0 
otherwise. 

Then the following theorem holds: 

Theorem 6. There exists a function O T ~ J such that 

provided 

o(F) z(F) = exp~  or(F) z(F), 
F F 

F, to(F) z(r)t < oo. 
F 

Furthermore the function O T has the following properties: 

i) oT(F) = @T(F -~- ~), V ~ ~ Z 2, (translation invariance) , 

ii) @T(F) is independent of )~ , 

(5.3) 

Ior(r)l 
iii) ~ F! <=A(fl)e -~(~)e(p'A) for 3 e - Z P < l ,  (5.4) 

Fop 
O(F)c~ A ~- O 

where F o p means that among the contours in F there is at least one ~, such 
that 0(7) encloses the lattice point p. 

A proof of this theorem can be found in [15]. The machinery of 
Appendix 1 transposed to the setting and hypotheses of this section may 
be taken as a short proof of this result. 

We are now able to give the main steps of the proof of the inequalities 
(2.2), (2.3). We start by observing that the following useful relation holds: 

where 

fa(X) = Y Pa(r) fAxtr), (5.5) 
F~GA 

G~ = {F]Vy~F 0(y)~ A 4= 0 and Vy i, yj~F 0(yl)c~0(y) ---- 0} ; 
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Pa(F) is the probability for finding a configuration such that F is the 
set of outer contours intersecting A; 

f (X tF)  is the conditional probability "for finding X in A given that F 
is the set of outer contours intersecting A". 

Using the relation (5.5) the l.h.s, of (2.2) can now be written 

Y. Y Y Pa~a;(r) f~,~:(XsuX:lr) 
XIcAI  X 2 c A 2  ar~GAI~.~A2 

- r~G~E PA,(Fs) PA~(F2)fA,(Xl tFs)fA~(X~IF2) .  

F2~GA2 

(5.6) 

Let G* be the collection of sets of outer contours extending not too far 
from 0As and dA2; more precisely 

G* = {F 1 u ffz I Fi E GA~ ; i e (1, 2) such that 

d(O(FO, As) < ½d(A1, A2) and d(O(F2), As)> ~d(As, A2)}. 

Then we can split (5.6) in Part I and Part II: the terms which involve 
F ~  G* yield Part I; those with F 6  G* Part II. 

Here we give an upper bound to the first one i.e. (Fa wt~ e G*). In 
this case 

fA1 u Az(X1 kJX2 tfft kJF2) =f&(Xl  IrO fAz(X2 IF2), 

so we find 

Iit < ~ ~ ~ L,,(x~trOfa2(X;Ir~) 
X1cA1 X2cA2 r luF2r~G * 

• IPA~A~(F~UFe)--Pa~(F~)Pa2(Fe)I < s u p  • - -  - - - -  - -  . 
= r~ ~ - ~  t P A ~ ( r ~ ) P A d ( r 2 )  

Notice that by the definition of Pa(F) and the relation (5.3) we have 

I PA'~a2(FsUF2) - 1 = exp 
e a , ( r l )  P A 2 ( r 2 )  r ' : 0 ( ~ ' ) ~ ( 0 ( ~ , ) ~  a , ) *  ° 

: 0 (F ' )  n (0 ( r 2 )  u A2) * 0 

Then it holds 

g o : r ( F  ' )  - 1 . 

ti1 < exp y '  kor(F') t-  1, 
F" :O(F')c~Qa/3 ~ O 

:O(F')n(Q2/3a)e=~ 

where Q~ = {p e Z21d(p, A~) < c~}, and Q; = complement of Q: in z 2. 
Finally by (5.4) we have 

III < expB(fl)[~Axl e -~'(a)d(A~'A2) - 1. 

(5.7) 

( 5 . 8 )  
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Remark. The argument above can of course be used for A 2 instead 
of A 1 . 

For the Part II (to which contribute big contours i.e. small terms) 
we find in Appendix 2 the following upper bound: 

]IIl ~ C(fl) IO All e -~'~p)a~a''~) • (5.9) 

The inequalities (5.8), (5.9) together with the previous remark give the 
inequalities (2.2), (2.3). 

6. Concluding Remarks 

Notice that (2.2), (2.3) imply that if O C Z ~ is finite and zg is a one- 
dimensional (i.e. with one generator) subgroup of z the process, (on 
(K,/~)), (No, %) is a weak Bernoulli scheme in the sense of [3] and, 
therefore, it is a Bernoulli scheme, [3]. 

In particular, if 

O,={~[l~i[<-n i = 2 ,  3,... v; ~1 = 0 } ,  

and zm={z¢}~=o;i=2, 3 ..... is the subgroup of the translations 
in the direction 1, the processes (N0,, z(~)) are Bernoulli schemes. Since 

the algebras d ,  = V zil)~0, are z(1)-invariant and increasing to the 
- 0 o  

algebra d of all the # measurable sets we deduce that the process 

(%' ~ ~°") is a generalized BernOulli shift [13]" It is easy tO see that if 0 

E(¢ ~, -c) is the entropy of the process (N, r), then the entropy of (NON, r(~)) 

is hE(N, z): hence z~, N0. has infinite entropy (E(N, z) # 0 in the cases 

we are considering). 
A particularly interesting process is the process (,~, zc~)): it seems very 

interesting to study the properties of this process when (2.2), (2.3) are 
not valid. It should be noticed that, on physical grounds, it seems to 
be possible that (2.2), (2.3) are always valid except for a certain critical 
process (z~, tic) (which ifv = 2 is given by z~ = e -8~,  sh2fl~ = 1) correspond- 
ing, in the physical language, to an Ising ferromagnet at the critical point. 

For the process (z~, tic) it is known, that the measure has very long 
range correlations (roughly decaying as d-  t/4) [14] and it would not be 
surprising if, is this case, the system were not a Bernoulli scheme: this 
situation might be general and the non Bernoullicity of a Gibbs' process 
could be associated with the critical points and could be used to give 
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an abstract definition of them. If the non Bernoullicity of the Markov 
processes at the critical point were true one would also have found a 
number of examples of K-systems 3 which are not Bernoulli schemes 
but are isomorphic to their inverses. 

Acknowledgements. We are greatly indebted to G. Caldiera and E. Presutti for actively 
partecipating in seminars where the ideas of this paper were developed. In particular they 
started our study by observing that the 1-dimensional factors of Section 6 might be Ber- 
noulli schemes under suitable assumptions. 

Appendix 1 

Proof of Theorem 3: 

1) 2~) = space of sequences X = {n~} ~ E Z V of non negative integers 
such that ~ n~ < 0% X e 2 ;  is interpreted as a finite subset of 2 V with 

multiply occupied sites; 

2) i f X e 2 ;  f (={~l~eZ",n~>l}= set of"occupied sites"; 

3) x ! =  I-I n~!; 
~sZ ~ 

4) IXt = ~ n¢; 

5) J = space of the functions on 2 ; ;  

6) Jo={flf  ~&f(o?=o}; 
7) J1 = { f [ f s J ,  f(O)= 1}. 
8) If f ,  g s J and ~ denotes the sum over the ordered pairs 

X~ uX2 =X 
(X~, 3;2) such that XI u X2 = X we define 

(f° 9) (X) = ~ f ( X  0 9(3;2). 
X1 uX2=X 

9) The function I(X) = 0  if tXI > t and 1(0)= 1 is the identity for the 
product in 8. 

1) If Z s J is of the form x(X)= l~ Z(~)"~ (here 0 ° =  0), so that 

z (XI  u X2) = )~(Xl) z (X2) ,  then ¢~x 

Z(X) (f°  9) (X) 
(X' f ° 9 >  = ~ X! = ( z , f >  (z,g> • 

x 

3 It is known thht the r-invariant Markov processes (z, fl) are K-systems for z + e s~ 
or for z = e -s~ fi ~ tic. In two dimensions it is also known that they are K-systems if they 
are ergodic and fi >>/3~ (see: R.L. Dobruschin in [5]) the results of this paper obviously 
imply that in any dimension the ~-invariant ergodic processes (/3, e -s~) with /3>>/3~ are 
K-systems. The situation is unclear in the remaining region (z = e -s~/3 >/3¢ but not very 
large). 
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11) If f e J o ,  we define: 

(Exp f ) (X)=  ~ l f , ( X ) ,  
n=O 

(where f o  = 1, and f "  is understood in the sense of product 8)) 

( -  1) n+l 
(Log(1 + f ))(X) Z = f " ( x ) ,  

n = l  n 

( l + f ) - l ( X ) =  ~ ( - 1 ) " f " ( X ) ;  
n=O 

12) ( D x f )  (Y) = f ( X w  Y) .  

13) Define 

0 if X ! > I  
(O(X)= e+,atx  I if X ! = I  

z~(x)= 1] z"~za(¢) "~, 
~e2 

(i.e. if )? + X) 

where )~A(~) is the characteristic function of A. It makes sense to consider 
Logo and (O-1 because (O e J l  (i.e. (O = 1 + (O', (O'~ Jo). 

14) Define 

(or = log(o (hence Exprp r = (O) 

and suppose that 

15) Then 

I(or(X)! lxl 
Z --25.  - z  < + o 0 .  

XcA 

z Jxt ~0(X) = (Z], q~) = exp (X], (°r) 
X c A  

= e x p  ~ ( °r (x )  z Ixl" 
XcA X [ 

16) To show the convergence of the series in (14) consider the functions 

Ax( Y) = ((O- ~ " Dx (O) ( Y) , 

and remark that ( O r ( x w ~ ) = A ~ ( X )  (this follows from the rule 
D e Exp O r = (D~ ~or) • Exp (or). 
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The above functions verify some equations which can be derived as- 
follows (remember that ~0(X) 4:0 only ifX! = 1, see 13)): Put X (1) = X\{Xl} 
and K(Xl, T ) =  1~ ( e4pi<x~l~)- 1); 

~sT 

Ax( Y ) (p - ~ (X,) (p(X w X2) 
y ,  - Y~ X~' X2! - X 1 u X 2 = Y  • 

= ~ q~-~(X1) ziXl+iX~le4~rx~x~l 
X~ ! X 1 u X 2 = Y  

X2!=l 

go - 1 (Xl) zz lx°)t + IX21 e 4Mx(~) uXzl e4~i(x, lxo )) e4fli(x~ Ix2) 
= ~ X 1 X1 U X2 =Y 

X2! = 1 

= z e 4 f l i ( x l l X ( l ) )  E (P -  1 ( X i )  e4Pi(x'[~) 
• ~EX2 

X2c~X= 0 

=ze4P.x~lx., ) ~ q~-~(X,) (e 4ei(xdO- 1) 
x, ux~:r  X1' ~°(X")uX2) 1~ t + 

• ~eX2 
X2c~X=o 

=ze4Pi(x'Ix(') ~ cP-l(Xl)v q)(X(')wX2) ~ K(xl, T) 
X 1 u X 2 = Y  ~'~1 TcX2 
X 2 o X = O  

q ) - i  
=ze 4pi(xllx(l') ~ K(xl, T) ~ (X1) q~(X(~)wX2) 

Tot xl~x2=r Xt ! 
T n X = O  X2c~X=O 

X23T 

=ze4ai(x~tX(") Z_ K(xl, V) 2 ¢P-I(X1) T) 
TCY X Y \ T  X I  ! q°(X(t)  k') S k") 

T n X = O  sc~(XuT)=O 

=ze4Pi(x'lxm) Z K(x,,T) [AxmUs(-Y-\T) Axus(Y\TwX')) 
Tcf \ (Y\T)! ~ ~  )" 

Tc~X=o 

17) Define 
I.= sup sup 

h + k = n  X(~.~ YeZ~ 
h=>~ IXl=h IYl=k 
k>-O 

Then the Eq. (16) imply, recursively, 

Hence 
1.+ 1Nzc(fl)I. with 

I.+ 1 <-- z(zc(fl))" 

For more details see [6]. 

t~x(Y)l 
Y! 

c(fi) = (exp(e s ~ -  1 ) -  1). 

1 
and z°(fl)= c(fl~-" 
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Appendix 2 

Here we give an upper bound for 

XIcAI X2cARE E kdX2 r~OA.~a~\o, PA,~A2(I') fA1uA2 (X1 1 F) 

- E PA,(Fa) PA~(F2) fAi(Xl IF1) fA~(X2[F2) , 
(F1,Fz)~GA~ x GA2\G* 

i.e. for the terms which involves contours which do not belong to G* 
(Part II of the text of Section 5). 

Let us begin with some improvement on the definition of the sets of 
contours which contribute to Part II. 

We put 

G1 ={rSGA,  lO(C)c~(Qa/3)c#O} ; G2={reGA2iO(r)c~(Q2a/3)4:0} ; 
G={rlwrzl3ie(1,2):F, .eG~};  ff~={(rl,F2)l~is(1, Z):I'~G~} ; 

It is worthwhile to observe that the first and the second element of the 
ordered pair in ~ are mutually incompatible. Moreover 2" elements of 
correspond to each element in G which contains n contours ?'1, ?'2---Y. 
such that Vi 0(?i)c~A1 + 0  0(?'~)c~A2 4= 0. 

Next we note that ¥ F, ~ fA(Xt F) = 1 ; so we can write 
XcA 

till < ~_ PA~ uA2(F) + E ,, PA~(F1) PAz(F2) 
r~G (r'~.r2)~o (AII.1) 

< 2  ~_ PA,(F)+2 Y~ P~(r2) .  
FeG" 1 FE02 

The first term of the r.Ks. of (AII.1) is twice the probability for finding an 
outer contour ? such that 

0(7)c~A1#0 and O(7)c~(Qa/3)c ~:O. 

The second term of r.h.s, of (AII.1) can be interpreted similarly. 
We put / / (7)  = probability for finding the outer contour 7. 
It is known (cfr. [16]) that 

H(?) < e-2 a H.  (AII.2) 

In order to perform an explicit calculation of the right-hand side of (AII. 1) 
let p be a point on 0A1 and r an outward straight line starting at p such 
that V q e r the following relation holds: 

d(q, p) < d(q, c~A1) ; 

let also L be the segment of r enclosed by ~3 A 1 and 0 Qa/3. 
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It is now easy to verify that the following relation holds: 

Fe~l q~OA1 y~q qeL ~/~q 
2 d d 

t~l>-- 5d d(q'OA1)<W l~[>g (AII.3) 

+ Y, 2 m':)+ Z 
q~L 79q q~r y~q 

d d d(q,c~Al)>- ~ l?I> ~ q¢L ]Tl>2d(q,r)AD 

The inequality (AII.2) together with the fact that the number of contours 
of length 1 is less then 31, give 

r.h.s, of (AII.3) < (21~All + -~) e - 2~'a/3 + 2de-"a/3 (AII.4) 

where x = 2 f l - l o g 3 ,  d-d(Ai,A2) and fl, for sake of semplicity, is 
chosen such that 3e -2p <½. In the same way we derive for the second 
term of (AII.1) 

Y', PAz(F)  < (2t0All + 16/3 d + 4) e -2~a/3  + ~ d e  -~a/3 . (AII.5) 
F2EG2 

Collecting together (AII.4) and (AII.5) we obtain the following upper 
bound: 

r.h.s, of (AII.1) <_ c l0 All e -~d/4 • 
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