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Abstract. We introduce and study a phase transition which is associated with
the spontaneous formation of infinite surface sheets in a Bernoulli system of
random plaquettes. The transition is manifested by a change in the asymptotic
behavior of the probability of the formation of a surface, spanning a prescribed
loop. As such, this transition offers a generalization of the bond percolation
phenomenon. At low plaquette densities, the probability for large loops is
shown to decay exponentially with the loops' area, whereas for high densities
the decay is by a perimeter law. Furthermore, we show that the two phases of
the three dimensional plaquette system are in a precise correspondence with
the two phases of the dual system of random bonds. Thus, if a natural
conjecture about the phase structure of the bond percolation model is true,
then there is a sharp transition in the asymptotic behavior of the surface events.
Our analysis incorporates block variables, in terms of which a non-critical
system is transformed into one which is close to a trivial, high or low density,
fixed point. Stochastic geometric effects like those discussed here play an
important role in lattice gauge theories.
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1. Introduction. Random Surface Analog of Percolation Transition

In this work we present a stochastic-geometric phenomenon which is of interest
for reasons stemming from two different origins: gauge theories, and percolation
models. The basic system which is studied here is an array of lattice plaquettes
which are occupied at random. Even without any interaction, this system exhibits
a phase transition, whose global manifestation is in the spontaneous formation of
infinite surface sheets.

There has recently been considerable interest in mathematical theories of
random surfaces. Such theories appear to play an important role in quantum field
theory and statistical physics:

(1) (Lattice) gauge theories which are among the central theoretical concepts
in elementary particle physics can be reformulated as theories of random surfaces.
This can be seen, for example, by performing a high temperature expansion.

(2) Three-dimensional spin systems, like the Ising- or the classical X Y model,
and the three-dimensional, classical Coulomb plasma are dual to lattice gauge
theories, i.e. theories of random surfaces. Quantities like the specific heat have very
natural expressions as averages over random surfaces. An understanding of
various theories of random surfaces might therefore provide a clue towards
calculating some critical exponents of three-dimensional statistical systems.

(3) Dual resonance models, more precisely string theories are related to
theories of random surfaces (at imaginary time, the history of a string is given by a
surface belonging to some probability space). String theories might be important
as approximate descriptions of gauge theories at large distances.

(4) The physics of crystalline surfaces and of interfaces separating different
physical phases leads to the study of models of random surfaces, like the discrete
Gaussian, the solid-on-solid model, or a model of self-avoiding random surfaces.

So far, not much is known rigorously about the possible transitions and the
critical properties, in particular the existence of continuum ( = scaling) limits, of
theories of random (lattice) surfaces. The discrete Gaussian and the solid-on-solid
model, above the roughening transition, appear to have a trivial continuum limit,
a massless field (but a complete proof of this very plausible conjecture is still
missing).

Polyakov has recently discussed a continuum theory of random surfaces which
appears to be an improved theory of relativistic strings and which poses
fascinating mathematical questions [1, 2]. It represents a promising attempt
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towards constructing an analog of Brownian motion for random surfaces. How-
ever its mathematical status and its relevance for the solution of physical
problems remain doubtful.

It is therefore of interest to introduce further theories of random surfaces and
to analyze the transitions and the critical properties of such theories.

The system which we analyze here is one of random plaquettes - which are the
elementary two dimensional cells, with vertices on the d dimensional lattice TLd.
(Random arrays of cells of higher dimension are briefly discussed in Sect. 6.) The
distribution of plaquette configurations is generated by associating with each
plaquette an independent choice of being occupied, or not, with the (homogeneous)
probabilities (p, 1 — p). That ensemble is, of course, an immediate generalization of
the Bernoulli bond percolation model - in which the random elements are lattice
edges, which are unit line segments joining nearest neighbor sites of 7Ld.

It is known that, for p large enough, typical bond configurations of the latter
system exhibit infinite connected clusters of occupied bonds, a phenomenon
known as percolation. The first question we wish to address is the choice of an
interesting analog of the percolation transition for the system of random
plaquettes. There is, of course, the phenomenon of formation of infinite clusters of
connected plaquettes. However, the two dimensionality of the plaquettes is
practically insignificant for this effect. Instead, we propose to study the asymptotic
behavior of the probabilities of the events Wy defined below.

For each closed loop 7, consisting of lattice edges, let Wy be the set of plaquette
configurations for which there exists a collection of occupied plaquettes forming a
two dimensional surface whose boundary is exactly y. [The relevant topological
notions will be made precise in Sect. 2i).] We denote by (Wy}p the probability of
the set of configurations Wy in the ensemble of independent plaquettes which are
occupied with the homogeneous probability p.

In the next section we shall derive the following pair of "a priori" bounds. For

- φ) Area (7)] ̂  < Wy}p^ exp [ - φ) Per (7)], (1.1)

where 0<c'd, cd< 00 are explicit, y-independent, constants; Area(y) is the minimal
area of a surface composed of lattice plaquettes which spans 7, and Per (7) is the
length (perimeter) of 7.

We observe that for large loops of simple shape, say rectangular, the two
bounds of (1.1) (at a fixed p) exhibit qualitatively different behavior.

Moreover, for d ^ 3 , we prove that the exact behavior of (Wy}p does follow an
"area law" [like the lower bound in (1.1)] for p<l/[2(d— 1)] and, conversely, a
"perimeter law" for p >(const)d~1/5 [Sect. 61)].

i) Main Results

Our main results concern the three dimensional Bernoulli plaquette model.
In three dimensions, the random plaquette system, with density p, has as a dual

the random bond model, with bond density (1 — p). The latter is well known to
undergo a percolation transition (as p is varied) - which is manifested in the
formation of infinite connected clusters. Actually, one could also consider other
notions of critically, for example one which is based on the divergence of the
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expected value of the cluster size. This leads to various critical densities: pc, πc, ρc,
and ρc which are defined in Sect. 2iii). However, it is most natural to expect that all
these critical points coincide.

The main results of this paper can be summarized as follows:

Theorem 1.1. For rectangular (N x M) loops γ, in a lattice plane, the quantity

(Wy}p has the following asymptotic behavior:

ίexp[-α(p)Area(y)] for p>l-πc

^ ^ ? p ~ lexp [ - c(p)Per(7)] for p<l-Qe

 { ' }

with some 0<α(p), c(p)< oo.

The symbol (W}~e~v(y) means here that lim — log(W}/V{y) = l, i.e. the
M,N^ oo

constants α(p) ami c(p) are actually well defined.

Thus, our results associate the two phases of the radom plaquette system with
the opposite phases (in a sense which will be explained below) of the dual bond
percolation model. Furthermore, if a natural conjecture on the phase structure of
the bond percolation model is correct, then there is a transition from an area law
to a perimeter law, which occurs at a single critical value of p.

A very interesting question, which is not resolved here, is whether the "surface
tension" <x(p) vanishes at the critical point. An affirmative answer to this question
would be an important step towards the construction of a scaling (continuum)
limit.

Theorem 1.1 is proven by supplementing the a priori bounds (1.1) (Proposition
2.3), with the corresponding opposite bounds, provided by Theorem 3.2 and
Theorem 4.1. The existence of sharp values for α and c [of which c(p) is the more
delicate case] is derived in Proposition 2.4 and Theorem 3.9. In all these results
more general loops are also considered.

ii) Further Comments

We wish to point out that the transition in the behavior oϊ(Wγ}p has a many-fold
relation to the bond percolation transition. One is the duality relation in three
dimensions. However, it is also natural to view the transition in (1.2) as a
generalization of the transition exhibited by bond percolation.

To cast the bond percolation transition in a more general form, consider the
probability that sites x and y are connected by a path of occupied bonds (in a
system of independent bonds), which we denote by τx y. It is expected (however
rigorously proven only for two dimensions [3-5]) that for large \x — y\, τxy

behaves as follows:

φ ) > 0 for p>Pc,
 v ' ;

where pc is the critical density for the formation of infinite clusters.
Obviously, the event that "x and y are connected" can also be expressed by the

statement that among the occupied bonds there is a collection which forms a
(finite) line whose boundary is the pair of sites {x,y}. As such, this event is a clear
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antecedent of W 9 in a system of lower dimensional geometric objects. There {%, y}
corresponds to γ, and the transition exhibited in (1.2) is from an analog of the
"area" (here |x — y\) law to a "perimeter" (here a constant) law.

This analogy provides yet another similarity between the transition discussed
here and two dimensional percolation. The dual of the latter is also a bond system.
It is known that, in two dimensions, the dual systems are always in opposite phases
(except at pc) [4-7]. Hence the above quoted results indicate an extension of this
feature to three dimensions.

Of course, our interest in these pure stochastic-geometric effects is also
motivated by discussions of "quark confinement" in gauge models. There, the
quantity for which area, versus perimeter, law is of interest is the expected value of
"Wilson loop" variables. It turns out that, at least for the abelian Z(2) gauge
model, such a transition can be traced exactly [8] to a geometric effect of the type
discussed here, albeit in a system of interacting plaquettes. These, and other,
relations with gauge models are described in Sect. 7.

The methods of this paper are based upon two sets of ideas. One is the
application of non-perturbative bounds. The other starts with the introduction of
block variables, carefully chosen so as to retain the relevant information. Under
rescaling, these variables exhibit a simple asymptotic behavior, effectively driving
the system away from the critical regime to a trivial fixed point.

A crucial point for the construction of block (bond) variables, which is related
to a long-standing conjecture in percolation theory, is the uniqueness of the
infinite cluster. Some results on uniqueness are obtained in Sect. 4i) and a brief
discussion of this point is found in Sect. 5.

The organization of this paper, and other results which have not been
discussed in the introduction, are indicated in the table of contents.

2. Random Plaquette Model in Three Dimensions

i) The Model and Its Dual

We consider the three dimensional lattice ΊL = Z3. Its elementary k dimensional
cells, fc = 0,1,2,3, are the sites (for fc = 0), the closed unit intervals, squares, and
cubes whose vertices belong to 1L. We refer to these as the edges (e), plaquettes (Q)
and cubes of IL

Let IF be the collection of the plaquettes of IL. The space of subsets of IF is
Ω = {0,1}F. We regard points of Ω as configurations of "occupied" plaquettes.
Each such configuration is represented by a function n: F-+{0,1}, where nQ = l
iϊϊQ is occupied.

As mentioned in the introduction, our aim is to discuss surfaces formed by
random collections of plaquettes. However, before turning to the stochastic effects,
the relevant topological notions should be clarified.

We denote by dQ the union of the four edges (of IL) which form the boundary
of the plaquette Q. A collection of distinct plaquettes Qv ...,Qk forms a surface,
which may either be expressed as the union:

S(Q1,...,Qk)=UQi
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Fig. 1. A plaquette configuration for which there is no orientable surface spanning y

or as the closure of their symmetric difference:

= Q1AQ2A...AQk
(2.1)

where AAB = Λ{uB\ΛnB. The closure in (2.1) is necessary to avoid spurious
subtraction of coinciding edges. The boundary of such a surface is formed by those
edges of 1L which belong to an odd number of plaquettes in Qv ..., Qk. Equivalently

= dQιAdQ2A...AdQk. (2.2)

For any surface S, dS is a finite collection of edges. It is easy to see that these
edges form a collection of self-avoiding loops. (Throughout this paper, all loops
will be understood to be self-avoiding.)

For a given loop y, we use the following symbol to denote the collection of
plaquette configurations which contain a subset forming an (unbroken) surface
which spans γ:

Wy = {neΩfik<co and Qv...9Qk with nQί, ...,wQk = l, δS(Qv...,Qk) = γ}. (2.3)

Furthermore, we denote by Wγ° the collection of those configurations for which
there is an orientable surface which is spanned by occupied plaquettes, and by Wy

those for which one may find a surface which is homeomorphic to a disk.
Clearly,

WyDWy°DWy

s. (2.4)

The less obvious fact that P^yΦT^° is demonstrated by Fig. 1. We shall now
present an alternative characterization of the above events.

With the lattice IL one may associate a dual lattice IL* = Έ? -f (f, f, y), whose sites
are the centers of the cubes of IL. Each plaquette of ΊL belongs to the boundary of
two cubes. Its dual geometric object is the edge of IL* which joins the centers of
these cubes. In order to distinguish edges of the direct lattice IL from those of the
dual, IL*, henceforth we shall always refer to the former as edges and to the latter
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as bonds (b). In general, to each of the k dimensional elementary cells of L there
corresponds a 3 — k dimensional cell of IL*, which is traversal to it, and intersects it
at a single point.

A configuration of plaquettes of IL may alternatively be given by specifying the
set of bonds of IL* which correspond to the unoccupied plaquettes. However, it is
most convenient to regard the points of Ω as complementary configurations of
plaquettes of IL, and bonds of IL* - where a dual bond is occupied whenever the
corresponding plaquette is not.

It is very useful to express the events Wγ, defined above, in terms of the
occupied bonds (of IL*). Following is the complete characterization.

Proposition 2.1 [8]. Let y be a loop formed by edges of IL, and S a surface (formed
by plaquettes) such that dS = y. Then

Wy = {neΩ\any closed, or infinite, path along occupied (dual)
bonds of n crosses S an even number of times}. (2.5)

Remarks. 1) This characterization of the event Wy depends on the fact that all the
closed loops of IL are spanned by the elementary δQ's. That is: for every closed
loop on IL there is a finite collection of plaquettes Qv ..., Qk such that δS(Qί9..., Qk)
= y. (Which really means that, in a discretized sense, IL is simply connected.) Both
this statement, and (2.5) are false for a finite lattice with periodic boundary
conditions.

2) We shall not provide here the full derivation of Proposition 2.1 - of which we
shall use only the easier half. For the completeness of our exposition let us,
however, point out that the necessity of the condition in (2.5) is directly implied by
the fact that the parity of the number of times a closed path on L crosses a surface
is the same for all the surfaces which spany. This is equivalent to the assertion that
any surface with no boundary is crossed an even number of times.

The analog of (2.5) for Wy (which refers to orientable surfaces) is:

Proposition 2.2 [8]. Let y be a loop formed by edges of IL, and S an orientable
surface (formed by plaquettes) such that dS = y. Then

Wy° = {neΩ\the total flux through S of any closed, or infinite,
path along occupied (dual) bonds is zero}, (2.6)

where the flux is measured as ( + 1) for a crossing from the negative to the positive
side of S, with respect to some orientation, and as (—1) in the opposite case.

The reader is invited to contrast the criteria (2.5) and (2.6) in the example
provided by Fig. 1.

For Wy the relevant condition involves chains which are formed by interlock-
ing loops of occupied bonds of IL* (see Fig. 2).

We shall later argue that the transition from an "area law" to a "perimeter law"
occurs at the same point for Wy and Wy, but not Wy.

ii) A priori Bounds

We shall now consider random configurations of plaquettes of IL, which are
occupied independently of each other with a homogeneous probability p. Such an
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Fig. 2. A configuration in W® for which there is no disk spanning γ

ensemble is described by the Bernoulli probability measure μp = Y\ vp on Ω, which
QeF

is a product of the (p9ί—p) single-plaquette measures, vp. Thus {nQ} are
independent random variables with the expectation values <n Q ) p = p. We denote
by < — }p = μp( — ) averages (or, for sets, probabilities) with respect to the measure
μp. The quantities (Wy}p obey the following very simple bounds.

Proposition 2.3. For every loop y, which consists of edges of IL

exp[ - |logp| Area(y)] ^ < Wy}p ̂  exp[ - c(p) Per(y)/7] , (2.7)

where Area(<y) = inf{fe|3Q1, ...,Q f c such that dS(Qv ...,Qk) = y} is the minimal area of

a surface spanned by y, Per(y) is the length (perimeter) of y and c(p) = |log

Furthermore, for rectangular loops the upper bound may be replaced by

(Wyy <exp{-φ)[Per(y)-4]}. (2.8)

With suitable modifications of the notion of Area(y), (2.7) (and (2.8)) hold also for
Wy° and Wf.

Proof 1) Let S be a minimal-area surface which spans y (among the orientable
surfaces for Wy°, and topologically trivial for Wy

s). The event Wy certainly occurs if
all the plaquettes of S are occupied. The probability of this is pAreaiy\ which is the
lower bound in (2.7).

2) If the event Wy occurs, then for each edge eey at least one of the four
plaquettes to whose boundary the edge e belongs (i.e., in the coboundary of e) is
occupied. We denote such an edge event by Ee. Its probability is μp(Ee) = 1
- ( l - p ) 4 - e x p [ - c ( p ) ] . Clearly

(2.9)



Transition from Area Law to Perimeter Law 27

where ev...,eΉ is any collection of edges of y with disjoint coboundaries. For
rectangular loops this is obtained by deleting one edge at each corner - hence the
bound (2.8). For a general (self-avoiding) loop we observe that each edge of y
shares a plaquette with at most six other edges (of y). Thus for (2.9) one may
choose at least JV=Per(y)/7. This implies the upper bound in (2.7). D

Remark. It is especially instructive to consider the event Re = Ω\Ee - which is the
occurence of an elementary ringlet of occupied dual bonds surrounding an edge e.
The upper bound in (2.7) is a consequence of the fact that if Wy occurs then none of
the events Re, eey, occur. One may improve that bound by considering larger
encircling loops (on IL).

Another result which can be derived using only a priori considerations is the
existence, for a large class of loops, of a sharp limiting coefficient for area law.
(Obviously, this coefficient vanishes in the perimeter law regime.) In statistical
mechanics, the analog of such a constant is known as the surface tension, while in
field theories, where the lattice TLd represents space-time in (d — 1) + 1 dimensions, it
is called the string tension. A more detailed discussion of the physical significance
of a limiting coefficient for area law can be found in Sect. 7.

The argument makes use of the FKG inequality for the simple case of non-
interacting measures. This form, which was first proved by Harris [6], is given
below.

Definition. 1) We say that n^n' whenever nQ^nQ for all Q. This relation defines a
partial order in Ω.

2) An event A is said to be positive if whenever ne A then also n'e A for all n' ^.n.
An event is said to be negative if its complement is positive.

Lemma 2.4 (FKG inequality) [6, 9]. // A and B are both positive or both negative
events, then

μp(AnB)^μp(A)μp(B). (2.10)

Definition. Let y denote the set of plaquettes which form the minimal surface
spanning a planar loop y. If y and y' are planar loops, then a tiling of / by y is
defined to be a partition of y', into disjoint sets, all but one of which are translates
of y. The distinguished set is called the remainder of the tiling.

Remark. Clearly, for each y and /, there exists a (non-unique) maximal tiling of /
by y, which contains the maximum number, M(y, /) , of translates of y as "tiles" of
y'. The (unique) number of plaquettes in the remainder of the maximal tiling will be
denoted by r(y, y').

Proposition 2.4. Let (yk) denote a sequence of planar loops. If for each k the
maximal tiling of yN by yk satisfies

lim [_r(yk, yN)/Area(7N)] = 0, (2.11)

then

lim[log<Wyk>1>/Area(yt)] (2.12)

exists.
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Remark. We note that condition (2.11) is always satisfied for a sequence of
rectangular loops, both of whose dimensions tend to infinity. For all such
sequences, the limit (2.12) has the same value, which we denote by — α.

Proof. Let n, meN. Choose a maximal tiling of the loop ym by yn. If each of the
M(yπ, ym) translates of the event Wγn occurs and each plaquette in the remainder
r(yn,ym) is occupied, then the event W surely occurs. Noting that the former
events are all positive and using the FKG inequality, we find

yJp y χ <»•• *«y <*" ̂ . (2.13)
Then, since Area(ym) = M(γn, γj Area(yn) + r(γn9 γj,

Area(yJ Area(yn) Area(yJ

Hence for each n

l o g p (2.14)

( 2 , 5 )

Taking lim sup, we obtain the desired result. •
H->00

The above argument implies also the following bound:

Proposition 2.5. For any rectangular loop y

Proof Clearly, any rectangular loop y may be regarded as an element of a sequence
of rectangular loops tending to infinity in the sense of Eq. (2.11). However, by
Proposition 2.4, for any such sequence the limit of the left hand side of Eq. (2.15)
exists and is (by definition) equal to — α(p). •

Hi) Definition of the Critical Points

As explained in Sect. 2i), we regard each neΩ as a configuration of mutually
exclusive plaquettes of 1L and bonds of I Λ We shall now define some critical
values of p, for the measures μp, which reflect transitions in the global properties of
the random bonds. Note that p is the plaquette density. The corresponding bond
density is 1 — p.

Each set of occupied bonds decomposes into connected clusters. For a given
neΩ, we denote by C(i) the cluster of occupied bonds which connects to the site
ίelL*. |C(OI is the number of elements of C{i).

The expected size of the connected cluster of j'elL* will be denoted by <|C(ι)|>p.
By translation invariance of μp, for every /elL*, {\C(i)\}p = {\C(0)\}p, where 0 is the
origin of I Λ We denote by P^Q?) the /^-probability that the connected cluster of
the origin is infinite, i.e. Poo(p) = μp(\C(0)\ = co).

Two standard critical points, πc and ρc, are defined by

l - π e = sup{pe(0,l)|<|C(0)|>, = oo}, (2.16)

and

> 0 } . (2.17)
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Notice that πc and pc are critical bond densities.
For the purposes of Sect. 4, we introduce the notion of percolation in layers

(ILfc) and quadrant layers (Lk). These are defined as follows:

\zSk} (2.18)

and

tk k\y^O}. (2.19)

Let IL*k and L*k be the subsets of IL* which lie entirely "within" ΊLk and t},
respectively.

The clusters C\ί) and C\ΐ) are defined as C(ί) above, by restricting con-
sideration only to those bonds which lie entirely within IL*fe and ]L*k, respectively.
Although L*fc is not translation invariant (in the z direction), for all sites ieIL*fc

5 the
quantities μp(|Cfc(i)| = oo) vanish simultaneously as functions of p. Hence we define
pk by replacing PJp) in Eq. (217)^with PkJp) = μp(\Ck(0)\ = CΌ). Similarly, the
quantities pk are defined in terms of Pk

ao(p) = μp(\C\0)\ = oo).
Clearly pk and pk form monotone decreasing sequences. We further define

ρ c =limrf (2.20)

and

β c = l i m # . (2.21)
/c->oo

Remark. Simply stated, qc is characterized by the condition that for each p < 1 — ρc,
the occupied bonds percolate within layers of sufficiently large, yet finite, width.
The point ρc is characterized by a similar condition involving quadrant layers.

Clearly

πc^pc^ρc^Qc. (2.22)

We expect that all these critical points coincide.
Our principal results for three dimensions are that (Wγ}p obeys a perimeter

law for p > 1 — πc and an area law for p < 1 — ρc.

3. Proof of Perimeter Law in the Surface-Dominated Regime

In this section, we prove that (Wy}p obeys a perimeter law, for planar loops,
whenever p > 1 — πc.

Let us first offer an intuitive picture of this behavior. For any p > 1 — πc, the
expected size of the occupied bond clusters is finite. This suggests that in typical
configurations there are unbroken surfaces of occupied plaquettes which extend to
infinity in all directions. When this is the case, the event Wγ occurs if the loop γ is
connected to such a "pre-existing" surface. Fluctuations along the perimeter suffice
to achieve this connection hence a perimeter law.

We prove the perimeter law by supplementing the a priori upper bound
(Proposition 2.3) with a similar lower bound, for which we offer two distinct
proofs.
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i) A Finite Cluster Argument

The dual lattice 1L* =Έ? - f (^ , f ) can be expressed as the cartesian product of the
"z axis", K = {& ^)} x (Z + i), with the "xy plane" G = (Z2 + (|, |)) x {£}. We denote
by K+ the (strictly) positive z axis of KΛ

Lemma 3.1. Let D denote the event that there is no path of occupied bonds
connecting K+ with G. Then

μp(D)>0 (3.1)

whenever p>l — πc.

Proof. Let Kh denote the part of the z axis K which lies a distance greater than h
above the xy plane G. Denote by Fh the event that there is a path of occupied
bonds connecting Kh with G (hence D = Ω\F0). We shall first show that for each
p> 1 — πc there is some finite h such that μp(Fh)<l.

Let τfJ.(p) denote the probability that i, j e L * are connected by a path of
occupied bonds. We claim that

^ ( f ^ Σ *«• (3-2)
keKh

In order to see this relation, one should consider the characteristic functions χkj,
which are 1 whenever the sites k and j are connected. Clearly if the event Fh occurs,
then XXfcj^l. Since (χkj} = τkp the preceding observation directly implies the
bound (3.2).

Similar considerations show that

= Σ V (3-3)
keK

the second equality following from translation invariance. Since for p>\— πc,
<|C(0)|> is finite, (3.3) implies that

lim Σ ^ = 0 (3 4)

Combining (3.4) with (3.2), we see that

μp(Ω\Fh) = l-μp(Fh)>0 (3.5)

for h large enough.
Next we argue that if (3.5) is valid for some h<co, then it also holds for h = 0. It

suffices to show that the conditional probability of no connection between the
finite segment K0\Kh and G, given that there is no connection between Kh and G, is
strictly positive. This in fact follows from either of two elementary arguments.
First, it is clear that the probability of separating K0\Kh from G is greater than the
probability that none of the bonds connected to K0\Kh are occupied, which is
simply p4h+1. Since both the latter event and Ω\Fh are positive in the sense of
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FKG, we obtain

μp(D)^p4h+1μp(Ω\Fh)>0. (3.6)

Alternatively, the last step can be demonstrated by a finite fluctuation
argument, based on the finiteness of the interaction (which here is zero) without
invoking the FKG inequality. D

Remark. The event D discussed above can be alternatively characterized as the
existence of an infinite surface, formed by occupied plaquettes, which separates the
positive z axis from the xy plane.

We shall now turn to the consideration of surfaces with a prescribed
boundary.

Theorem 3.2. For each p> 1 — πc, there exists a constant 0<cf(p)< GO such that for
any planar loop y

< Wy)p ^ exp[ — c'(p) Per(y)]. (3.7)

Proof. Let y be a loop of edges in the xy plane. We denote by Qί9 ...,QN those
plaquettes in the minimal surface, S , spanning y which share an edge with the
loop. The bonds dual to these plaquettes are denoted by bv...,bN. Clearly
ΛΓ^Per(y).

Consider the N vertical lines which begin at the bonds fe. and extend upward
parallel to the z axis of IL*. Let D be the event that there is no path of occupied
bonds emanating from the ίth such line and intersecting the xy plane. By
translation invariance

μp(D^ = μp{D), (3.8)

where D is the event discussed in Lemma 3.1.
IV

The event Π D clearly prevents any finite closed path of bonds from
ί = l

interlocking y and hence insures that Wγ occurs (since, almost surely, there are no
infinite paths for p > 1 — πc). By the FKG inequality

N

) £>. ^ f] μpiD^lμpWY^lμpiD)]***™. (3.9)

Hence, for d = \logμp(D)\,

< ( ^ ) p ^ e x p [ —c;(/7)Per(y)]. (3.10)

To be more explicit, consider the cylinder obtained by upward translation of
N

the loop y. If the event f] D. occurs, then there is no path of occupied bonds
i= 1

which connects Sγ with the walls of this cylinder. Let Bo be the set of dual sites
which lie just "below" Sγ. We now divide the sites of IL* within the cylinder into
two disjoint sets: Bι consists of those sites which are connected (via a path of
occupied bonds) to a point in Bo, and B2 includes those which are not. The
plaquettes which separate points of B2 from points of BovB1 form a manifestly
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Fig. 3. Cross-section of the surface constructed for Theorem 3.2

orientable surface. One component actually spans γ the rest are closed bags (see
Fig. 3). D

Thus we have shown a stronger result.

Corollary. For p > 1 — πc,

, p ^ e x p [ - C » P e r ( y ) ] . (3.11)

Theorem 3.2 together with Proposition 2.3 shows that in the high density
phase, p> 1 — πc, (Wγ}p has upper and lower perimeter bounds. In Part iii) of this
section we prove that the actual behavior is a perimeter law - with a well defined
constant c(p). First however we shall describe an alternative proof of Theorem 3.2.

ii) A Constructive Proof

Here we offer a second proof of perimeter law behavior which, for simplicity, we
restrict to the case of rectangular loops. Although this proof is technically more
cumbersome than that given in the previous subsection, it has the advantage of
actually providing a construction of the surface which may be useful in the study
of some of its properties.

Definition. Let Δ(a, i>, c) denote the rectangular solid of dimension axbx c

l ^ x , O ^ z S c . (3.12)

Let S{a,b,c) denote the event that there is a surface of occupied plaquettes
separating the front (z = c) from the back (z = 0) of A(a9b,c) (see Fig. 4).

Note that S(a, b, c) may be (dually) interpreted as the event that there is no bond
crossing from the front to the back of Δ(a,b,c).

We note the following obvious property of the event S.

Proposition 3.3.

and

(3.13a)

(3.13b)
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S ( α , b , c )

Fig. 4. The event S{a, b, c)

I—h-H •IH-h-H

Fig. 5. The box L + 2h,h) and the event H^

Proof. By the a <-> b symmetry, the two relations are equivalent. Equation (3.13a)
follows from the fact that S(2a, b, c) is the event that two disjoint translates, Sί and
5 2, of S(a, b, c) occur, with the further constraint that two spanning surfaces must
join together. Relaxing this constraint is the content of inequality (3.13). We have

μ2

plS(a, b, c)']=μpίS1(a, b9 c)nS2(a, b, c)] ̂ μplS(2a, b9 c)] . D (3.14)

We shall now consider events in boxes A(L + 2h, L + 2/z, h). Each such box is
regarded as consisting of an "inner" part, which is simply A(L, L, h), and an "outer"
part, which forms an annulus of width h encasing the LxL square. The outer
annulus consists of four overlapping copies of A(L-Sr2h,h,h\ each of which is
referred to as a boundary region (see Fig. 5).
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Fig. 6. Two dimensional projection of the event P(L, h)
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Fig. 7a and b. Connection of plaquette events

Definition. We denote by H^L.h) the event that there is a surface of occupied
plaquettes separating the x = L face of A(L + 2h, L + 2/z, /z) from its x — LΛ-h face
and lying entirely in the boundary region

Similarly, let H2(L,h), ...,H4(L,ft) denote the analogous events in the other three
boundary regions. We note that the H^L.h) are equivalent to the event
S(L + 2ft, ft, ft) by translations and rotations.

We call 4

P(L,ft) = S(L + 2ft,L + 2ft,ft)n f] H£(L,Λ) (3.15)

the rescaled plaquette event. Pictorially, it is convenient to represent P(L, ft) by its
two dimensional projection in the xy plane, as in Fig. 6.

Remark. P(L, ft) is referred to as a plaquette event because when two boxes of the
same dimensions, Aγ and A2, are placed next to each other in such a way that the
adjacent boundary regions coincide, the occurrence of the plaquette event in both
boxes implies that there is an unbroken surface in the larger box, z l 1 u J 2 ,
separating the front from the back (see Fig. 7a).



Transition from Area Law to Perimeter Law 35

1
4h

Fig. 8. Nine overlapping translates of A(L + 2h,L + 2h,h)

To insure connection of plaquette events of different length scale, with L1 >L2

and hί>h2, we place the plaquette as shown in Fig. 7b, so that the boundary
region of the smaller box lies entirely within the adjacent boundary region of the
larger box. Thus the boundary region of the larger box A x intersects the interior
(i.e., non-boundary) region of the smaller box A2.

The crucial property of the plaquette events is their behavior under rescaling.
As is demonstrated by the following lemma, if a plaquette event is sufficiently
probable, then rescaling enhances its probability.

Lemma 3.4. Let λ<\ and α =

for some ft < (3/4)L, then

r4). //

JP(L,h)^ί-c (3.16)

(3.17)

Proof. First place nine boxes of the form A(L + 2ft, L + 2ft, ft) adjacent to each other
with boundary regions overlapping (as in Fig. 8) to obtain a large square of the
form zl(3L +4ft, 3L + 4ft, ft).
If plaquette events occur in all of the small boxes, then there is a surface spanning
the large square, i.e. the event S(3L + 4h, 3L-f 4ft, ft) occurs. Hence

This implies that

μJS(3L + 4ft, 3L 4- 4ft, ft)] ̂  1 - 9aλ .

3L + 4ft,

(3.18)

(3.19)

since the event S(3L + 4ft, 3L + 4ft, 2ft) surely occurs if S(3L + 4ft, 3L + 4ft, ft) takes
place in either the front half or the back half of zl(3L + 4ft, 3L + 4ft, 2ft).

To achieve the event P(3L, 2ft), we also need the boundary events HβL, 2ft)
which, as remarked previously, are simply translates of the event 5'(3L+4ft,2ft, 2ft).
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Thus by the FKG inequality,

4 1

Pi if.(3L,2ft) ^μJ[iί 1 (3L,2ft)]=^[S(3L + 4ft,2ft,2ft)]. (3.20)

The term on the right hand side of (3.20) can be bounded below by noting that 3L
+ 4ft ^ 8ft and applying Proposition 3.3 (twice), to obtain

μj[S(3L + 4ft, 2ft, 2ft)] ^ μpίS(3L + 4ft, 3L + 4ft, 2ft)] . (3.21)

Using Eqs. (3.19)—(3.21), we obtain the desired lower bound

= l-ocλ2. D (3.22)

Remark. Iterating the rescaling procedure k times, we find that if μp[_P(L, ft)]^l
- o d f o r ft^(3/4)L, then

μp[P(3kL,2khmi-aλ2\ (3.23)

Hence the probability of the plaquette events approaches one very rapidly.
Moreover, the rescaled plaquette events occur in asymptotically flat regions, in the
sense that height/length goes to zero with k. The relative size of the boundary
region also approaches zero with k.

For a given loop y, we shall use plaquette events of scales up to the size of the
loop to construct a spanning surface of occupied plaquettes. In order to do this, we
must first show that, if p > 1 — πc, there exists a scale L such that the first rescaled
plaquette event, P(3L,L), satisfies μp[P(3L, L)] > 1 — α. This will be shown to
follow from a property of the event S(3L, 3L, L) which was first derived (in a quite
general context) by Kesten [10].

Proposition 3.5. If p>ί — πc, then Vε >0, 3L such that μp[P(3L, L)] > 1 - ε.

Proof. Kesten [10] has shown that if p > 1 - πc, then lim μp{β{3L, 3L, L)] = 1.
L->oo

By reasoning analogous to that in Proposition 3.3 and Lemma 3.4, it is easy to
show that

μplP(L, L)] ^μΊJ*[S(3L, 3L, L)] - 1 . (3.24)

Grouping four translates of the event P(L, L) into a larger block (see Fig. 9) and
using the FKG inequality, we obtain the estimate

μp[P(3L,L)]^μ^[P(L,L)]. (3.25)

Hence μp[P(3L,L)] also tends to 1 with L. •

We now offer a second proof of Theorem 3.2 for the case of rectangular loops.

Proof (oi Theorem 3.2). Let M and N denote the dimensions of the loop γ which is
taken to be centered in the xy plane of IL Let L be the smallest length scale for
which μp[P{3L9 Vβ ̂  1 - α/2.

We tile the inner rim of the loop y with translates of the plaquette events
P(3L,L) as shown in Fig. 10.
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Fig. 9. Four overlapping translates of P(L, L)

P(3L,U

\

4-

— ^ j

3 L

.

i

Fig. 10. Tilling of the inner rim of γ (only one plaquette event is shown)

In this tiling, we place the "plaquettes" P(3L, L) so that their outer boundaries
(of width L) extend beyond the loop y. Whenever possible, adjacent boundary
regions of the plaquettes are taken to coincide. Since M and N are not generally
the proper multiples of L, the boundary regions of the "tiles" at the corners of γ
may be required to overlap the interior (non-boundary) regions of adjacent tiles. It
is clear that this construction assures the connection of surfaces of adjacent
plaquettes.

Let nί denote the number of translates of P(3L, L) required to tile the inner rim.
Clearly nι ^2(M + Λ0/3L = Per(y)/3L. [We have discarded the extra length that is
obtained from the boundary regions of P(3L, L) and we have counted the corners
twice.] Let us denote the simultaneous occurrence of all nί plaquette events by ωv
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,P(3L,L)

Fig. 11. The annular regions Γί and Γ 2 with representative tiles

P ( 9 L , 2 L )

Fig. 12. Cross-section of the surfaces in the annular regions Γx and Γ2

Using the FKG inequality, we have

(3.27)

Note that the event ωγ implies that there is an unbroken surface separating the

front (z = L) of the annular region

M M N N
(3.28)

(see Fig. 11) from the back (z = 0).

Next we tile the second annular region

Γ2=Ux9y,z)eJL
M M

~2

N

Ύ
N

~2

(see Fig. 11) with the plaquette events P(9L,2L). ^ 3 ' 2 9 ^

This tiling produces a surface in the annulus Γ 2 . Moreover, the plaquette

events P(9L, 2L) interest the annulus Γx in such a way the two surfaces in Γx and

Γ2 are joined to form a larger surface. This is illustrated in Fig. 12.
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The second tiling event, which we shall call ω2, requires the simultaneous

occurrence of n2 plaquette events P(9L,2L), where n2^2(M + N—12L)/9L

<Per(y)/9L.

We continue the procedure, defining tiling events ω3, . . . ,ω s for the annular

regions Γ3, ...,ΓS until the interior is exhausted. This happens quite rapidly; the

procedure terminates when s satisfies

i , « - !!•!}•
Each event ωk is the intersection of nk^PQr{y)/3kL translates

P(3k~1(3L\2k~1L). Hence

μ p (ω,)^[ l-αl/ ϊ 2 T e r ^ 3 k L . (3.30)

Finally, define the event ω 0 to be the existence of a wall of occupied plaquettes
extending outward from the loop y to a height z = L. This event has probability
pLPer(y) Q e a r i y the simultaneous occurrence of ω 0 , ...,ω s implies Wy. Thus, again
using FKG, we have the estimate

k=l

r ( v ) = exp[ — c'(p) Per(y)] . (3.31)

Here ζ>0 denotes the infinite product

00

C l Γ Γ1 Λ/ 1 / l 2k~|(l/3ϊc) ci Λ^\

~ 11 Ll~α l/^ J J (J.32)
fc=l

and hence is independent of the loop γ. D

Remark. The surface constructed by the above procedure is obviously orientable
and lies in the upper half plane.

Hi) A Sharp Constant for Perimeter Law

In Proposition 2.4 it was demonstrated that for a large class of planar loops the
coefficient of area law tends to a sharp constant.

Such a strong result is not expected if (Wγ)p obeys a perimeter law period.
For example, by serrating a given loop, we may easily double or triple the perim-
eter. Yet, this should not drastically alter the probability that the loop is spanned.

We can show that for p > 1 — πc, the coefficient of length law for loops with
"smooth" perimeters (i.e., loops with a fixed number of corners) tends to a sharp
constant.

Definition. Let ΛN denote the cube {{x,y,z)e1L\\x\,\yl\z\SN}.
Let CN denote the event that there exists a surface S of occupied plaquettes in

ΛN, such that 8S consists of the line segment |x| g JV, y = 0, z = 0 and edges which lie
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Fig. 13. The event CN

exclusively in dΛN. Dually, this means that no circuit of occupied bonds in ΛN

encircles the x-axis with odd linking number (see Fig. 13).

Proposition 3.6. For every pe[0,1],

lim
μp(CN)

N

exists.

N
Proof. Let JV, M be integers. Take N>M and let — denote the largest integer

N \N]
smaller than —. If C^ occurs, then — translates of the event CM occur. This is

M [M\
easy to see by placing disjoint translates of the smaller cube centered along the line
segment |x|^iV, y = 0, z = 0. Thus

(3.33)

or

logμ p(CN) +°y-N ~ M

Taking lim sup and lim inf, respectively, we obtain the desired result. D

(3.34)

Remark. In the surface dominated regime, it is clear that the above limit is finite it
shall be denoted by — c(p).

Next, we consider a "dressed up" version of the cube event.
Let CN denote the intersection of CN with three other events: (1) the top face of

ΛN is separated from the bottom by two surfaces of occupied plaquettes, one lying
entirely above, and the other entirely below, the xy-plane (2) and (3) analogous
events for the other two pairs of opposing faces.
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Proposition 3.7. For p>l — πc

Proof. Clearly μp(CN)^μp(CN).

However, in order for CN to occur, it is sufficient that CN occur along with six
renormalized plaquette events, the probabilities of which tend to one. A lower
bound is obtained using FKG. In fact, it is not difficult to show that, for N
sufficiently large, there exists a constant K such that

μp(CN)^μp(CN)(l-e-KN). D (3.35)

Definition. Let TN L denote the tube {(x9y9z)eJL\\x\^L; | j i |z | = iV}.
Denote by tN L the event that the top slab (z = N) of TN L is separated from the

bottom (z = — N) by a surface of occupied plaquettes which is pinned to the line
segment \x\^L, y = 0, z = 0.

Proposition 3.8. For p>l — πc

N~*• oo M—> oo

Proof. The proof of this proposition is analogous to that of the previous two
propositions. D

Theorem 3.9. Let y0 be any fixed loop and let (yM) be a sequence of loops which are
scaled up copies of y0. Then

l^4 (3.36)
yM)

whenever p > 1 — πc.

Proof. Let A denote the (fixed) number of corners of the loops yM. For M
Per(y )

sufficiently large, the occcurrence of the event WγM implies that at least —

— 2Δ disjoint translates of event CN occur. Thus, by Proposition 3.6, (WyM)p is
asymptotically bounded above by exp[ — c(p) P e r ^ ) ] .

On the other hand, we may surround the segments of the loop yM, excluding

corners, with tubes of the form TN L. /so that X ^ = P e r ( y m ) — 2ΔN\ In any

I ί Iconfiguration in which the events tNLι occur in all of the tubes, the event WyM is
achieved if (1) all the plaquettes in cubes ΔN centered at each corner are occupied,
and (2) a surface of renormalized plaquettes of initial height N spans the new loop
formed by the tubes. Thus, using F K G and noting that the probabilities of the
plaquette events approach one exponentially in N, we see that asymptotically
(WyM)p is also bounded below by exp[ — c(p)Per(yM)]. D
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Fig. 14. A bridge of occupied plaquettes

4. Proof of Area Law in the Dual Percolation Regime

In this section, we show that for p < l - ρ c , (Wy}p obeys an area law. This is
accomplished by supplementing the a priori lower bound of Proposition 2.3 with
an upper bound of the same form. For the purposes of this section, we restrict
attention to rectangular loops. (As indicated by Proposition 2.4, only these loops
need be considered to obtain a more general result.)

Since our proof of area law is rather involved, let us first discuss the general

scheme.
Whenever p < l - ρ c , bonds percolate in some quadrant layer of a finite

thickness k. We show in Sect. 4i) that this enables us to construct, within this layer,
"renormalized" bond variables which occur with probability very close to one.

Should the event Wγ occur, it is clear that inside each fc-layer which cuts the
loop, opposite sides of γ are joined by a "bridge" of plaquettes whose projected
width is k (see Fig. 14).

To be more explicit, define a pin, d{k]r to be a set of points in the direct lattice

layer ΊLk given by
% V\ = x,y = y}. (4.1)

As is clear from Fig. 14, the intersection of a rectangular loop y centered in the xz
plane with ΊLk consists of two pins separated by the width of the loop.

A bridge between the pins d(k)

u0 and 4*i,o i s a s u r ί a c e s of plaquettes within the
layer ΊLk such that the intersection of the boundary dS with the interior of ILk is
simply the pins d{k] 0 and 4*i,o I n o t h e r w o r d s , the boundary of the bridge consists
of d{k\ 0 and d(k)

2 0 and some edges of the layer lLk which lie entirely in the planes
z = 0, or z = k.

We denote the event of a bridge of occupied plaquettes between 4^,0 a n d 4*i,o
by β(k\xvx2). Using suitably generalized two-dimensional techniques, we prove in
Sects. 4ii)-iii) the following upper bound which leads to the area law.

Theorem 4.1. For each p<l-pk, there exists a constant m(p)>0 such that, for any

xx and x2,

m{p)\xλ-x2\-]. (4.2)
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The proof of this result is the subject of the rest of the following sections. Here
let us demonstrate that it implies the area law.

Corollary. Suppose p<l — ρc. Then there is a constant α(p)>0 such that, for any
rectangular loop y,

.<W;>p<exp[-α(p)Area(y)]. (4.3)

Proof. Let k be the smallest integer for which p<l—pk

c. Let M and N denote the
lengths of the sides of y. We shall first prove (4.3) for cases in which M/k is an
integer.

Consider the layer of width M which contains (and is normal to) the loop γ.
Let us divide this layer into exactly M/k translates of IΛ If Wy occurs, then within
any layer of thickness fc, a translate of the event /?(fc)(0, N) must occur. Since there
are M/k disjoint layers, we have

.<W;>pgexp(- [m(p)N][M/fe])Ξexp[-c(p) Area(y)]. (4.4)

By Proposition 2.4, the sequence of rectangular loops of size (nk x N) has a well
defined surface tension which satisfies oc(p) ̂  c(p) > 0. Therefore, by Proposition 2.5,
for any rectangular loop y, we have the bound

<FFy>p:gexp[-α(p)Area(y)]. • (4.5)

i) Reduction to a Dense System of Block-Bond Variables

Most events considered in this section are best characterized in terms of bond
configurations. The density of occupied bonds is q = l—p. To emphasize the
relevant parameter, we denote

/ίβ( ) = μi- β ( ) = μP( ). (4.6)

We first prove an elementary probabilistic lemma which is used at several
points in this section.

Definition. Let Γ = {0,1}N be a configuration space with associated Bernoulli
measure mp. For any configuration neΓ, we define the sphere

SN(n)=ίn'eΓ Σh-n^Nl. (4.7)
I ΐeN J

Let A C Γ be an event. We define

INA = {neΓ\SN(n)CΛ}, (4.8)

and

ENA = {neΓ\SN(n)nA + &}. (4.9)

Thus INA consists of those configurations for which the event A occurs and is
stable to modification of any set of up to N variables {«.}. The configurations in
ENA(CA) include those for which a change of some set of no more than N variables
{nt} produces the event A. We note that

Γ\INA = EN(Γ\A). (4.10)
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Lemma 4.2. Let OsΞp' Sp. For any positive event A:

(a) mp(A)Up-p')Nmp,(ENA), (4.11)

(b) ^ ^ I - T ^ ( 4 1 2 )

\p—p)
Proof. Let Δ=p — p'. The key to (4.11) is to realize the measure mp as being
generated in two steps. First, one draws a random configuration n'(wJ = 0,1) with
density p' = p — Δ. In the second step, an independent configuration n" is drawn
with density Δ/(l—p'). Thus (n',n") are distributed with measure mpxmAf{ί_pΎ

The union of the two configurations, that is

π/,n//), (4.13)

has a Bernoulli distribution with density

ί-p

This is most easily seen by regarding the event {nt = 1} as the disjoint union of the
events {n = l} and {n = 0, n" = \}.

Thus mp(A) is the probability that A occurs in the random configuration n. To
bound this probability below, we observe that if the weaker event ENA occurs in n\
then there is a set (which depends on n'\ of no more than N sites, which if all
occupied in n" would produce the event A in n. This proves that

Δ \N

mp,(ENA), (4.14)

which directly implies (4.11).
Relation (4.12) may be proved by a similar argument. This time it is the

measure mp9 which should be viewed as being generated in two steps. First, a
random configuration n at density p is drawn. Next one draws an independent
configuration n" at density l—(Δ/p). (For small Δ, this may be regarded as a
configuration containing a low density distribution of "holes", which are used to
remove sites from the configuration n.) Thus (n,n") are distributed with measure

y The intersection of the two configurations.

f/), (4.15)

has a Bernoulli distribution with density

p(l-Δ/p) = pf.

This follows from the fact that the event {n!t = 1} is the intersection of the events
{nf = l} and {< = 1}.

Thus mp,(Γ\A) is the probability that A does not occur in the random
configuration n'. We note that if INA does not occur in n (which is more probable
than Γ\A), then there is a set, depending on n, of no more than N sites, which if
none are occupied in n", guarantee that the event A will not occur in n'. Thus

)^jj mp(Γ\INA), (4.16)

which implies (4.12).
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Fig. 15. The event Ξf)

Alternatively (4.12) may be proved from (4.11) by a duality argument. We note
that for any negative event BCΓ, Eq. (4.11) becomes

mp,(B)^ANmp(ENB). (4.17)

This follows from (4.11) by regarding the measure mq = m1_p as a Bernoulli
measure at density q on distributions of "holes". In this language, the event B is
positive and thus (4.11) gives

(4.18)

(4.19)

Definition. Let ί,jeΊL*k have y coordinates equal to zero and the x coordinates
ivjv with i1 <jv We denote by Ξf) the event that i and; are connected by a path
of occupied bonds contained entirely within the region

which is equivalent to (4.17).

Since Γ\A is indeed negative, Eqs. (4.10) and (4.17) imply

1 - mp.(A) ^ ΔNmp(EN(Γ\Λ)) = ΔN[1- mp(INA)^,

which proves (4.12). •

Next we establish some properties of the infinite cluster for q^

(4.20)

(see Fig. 15).

Lemma 4.3. For every q>pk, μq(Ξ(/f) is bounded below by a constant a(q)>0
uniformly in \ί—j\.

Proof Let q — pk = 2A >0. At bond density q' = q — A, both i and j are connected
to infinity in their respective quadrants,

^ , 3 ^ 0 } , (4.21)
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Fig. 16. Connection between i,jedΛ{$M by path in ΊL*k\Λ^\

and

(4.22)

with probability not smaller than [P^(p')]2 (by FKG), with p' = 1 -q'. This event
implies that there exists a path of occupied bonds in Qf) = Qf\ nQf]_ emanating
from i which overlaps a similar path emanating from j . [Two paths are said to
overlap if they have at least one vertex with the same (x, y) coordinate, so that their
projections intersect]

The occurrence of two such overlapping paths clearly implies that the
configuration is in EkΞf). Hence we have

μq_Δ(EkΞ%)UPkJpΈ2 (4.23)

This yields, by Lemma 4.2(a),

•
Corollary. Let A{k]M be an NxMxk rectangular box

Λf,M = {(x, y, z)e L*fe \\x\^N, \y\ g M},

and let dΛ{k)

>M denote its boundary

(4.24)

(4.25)

] = N9\y\=M}. (4.26)

// iJedA^M, then with μq-probability bounded below by [α(g)]3, there is a path
of occupied bonds in lL*k\Λ(^M connecting i with j (see Fig 16).

Theorem 4.4. Suppose q > qk. Then the infinite cluster in IL*fe is unique.

Proof. Let iJeJL*k. By countable subadditivity of μq( •), it is sufficient to show that
the set of configurations for which both i and j are connected to infinity within
and iφCk(j)λ has measure zero. We denote this set of configurations by A.

1 This is a slight abuse of notation. By ίe Ck{j\ we mean that i is the endpoint of a bond in Ck(j)
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Fig. 17. The events s^L and tfL

Let (ΔΉOL*k\ N = l , 2 , . . . , be a nested sequence of rectangular boxes (i.e.,
ΔNCΔN+1) such that UjeΔ1 and lim zlN = IL*fc.

N-*oo

For n e β , let C^O denote the set of points connected to leΔN by occupied
bonds, all of which lie within ΔN.

Let AN be the event that i and j are both connected to dΔN but are not
connected to each other within Δ

(4-27)

CO

Note that AN+1CAN and A = f] AN. Hence by continuity of the measures
Λ Γ 1
f]

Λ Γ = 1

μq(A)=limμq(AN).
N->oo

(4.28)

By the corollary to Lemma 4.3, the conditional probability of A given that AN

occurs obeys

^l-la(q)Y. (4.29)

However, since AnAN = A9 we have μq(A\AN) = μq(A)/μq(AN).
Thus

)fiq(AN). (4.30)

Taking the limit N-^co and noting that a3 >0, we obtain the desired result

μp(A) = 0. D (4.31)

Next, we introduce some of the sets and events necessary for the construction

of the renormalized bond lattice.

Definition (see Fig. 17). Let E(j\ be the set of sites in lL*fc given by

y^0,y = J-x}. (4.32)
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We denote by Ef2, Ef3, and EfΛ, the reflections of EfΛ about the planes y = 0,
x = 0 and y= — x, respectively. The union of the above four sets forms the
boundary of a "diamond," which we shall denote by D{j\

Take L > J and let Af be the L x L x k box defined by

(4.33)

Let SfcdΛf be the right side of Λ{£\ i.e.

Sf = {(x^z)eAf\x = L}. (4.34)

Similarly, let T^CdAf be the top of Λf\

f (4.35)

We define s^L to be the event that E(j\ is connected to S(£] by a path of
occupied bonds which lie entirely within A^\ Let t{j]

L denote the event of an
analogous connection between Ef\ and T}£\

Proposition 4.5. For every q>pk

c, there is a J large enough so that μq{s(j)

L) = μq(tij^L)
is arbitrarily close to one (provided that L>J).

Proof. At bond density q > pk

c, if J is sufficiently large, then E{j\ is connected to
infinity within the quadrant layer L*fe with μ -probability as close to one as
desired. This implies that the probability that Ey\ is disconnected from S f u T f
tends to zero as J gets large.

The probability that EfΛ is not connected to S^ is 1 - μq(s(®L\ which is also the
probability that E(j\ is not connected to T^\ By the FKG inequality, the
probability that Ef\ is not connected to either of these two sets is larger than
[1 — /^(Sjfe)

L)]2, and as we have seen, this probability is arbitrarily close to zero
for sufficiently large J. •

Definition. Let V* be the lattice

which is oriented at 45° with respect to the lattice lL*fe. For each ιe V* we denote by
£ ^ ( 0 , Df{ΐ), Λ<t\ΐ)9 S f (z), etc. the "horizontal" translates of the sets E™v Df, A<£\
S{^ etc. by the vector iL.

Remark. The set of diamonds D{l\i) forms a partition of the lattice IL*k. In the
centers of these diamonds are the smaller diamonds D{j\ί). One may regard the
latter as the sites of a "coarser" lattice, which is oriented at 45° relative to IL*^ and
has the Euclidean spacing ]/ΪL (see Fig. 18).

We shall now associate with each bond configuration on lL*k a configuration of
"occupied" bonds on V* - which represent renormalized bond events.

Definition. Let iJeV*, with \i—j\= |/2 be a set of neighboring sites of ¥ * . We
regard b = {ij} as a bond of V*, and denote the event

hik) = {neΩ\D{j\ί) and Df*(j) are connected by some path of
occupied bonds of IL*^ which lies entirely within

(4.36)
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Fig. 18. The partition of the lattice ]L*fc

Fig. 19. The events s$L and tfL

These are not yet the final variables we shall use, since the simultaneous
occurrence of h{^j} and hffV] does not imply a true connection between D{j\i) and
D{j\ϊ). However, let us first show that when J-+ao, the bond events h{k) (which of
course depend on L and J) are driven towards a trivial fixed point.

Proposition 4.6. Let q>pk

c. Then μq(h^) can be made arbitrarily close to one by
choosing J sufficiently large.

Proof Let ε>0. Define A=~(q — pk)>0 and choose TV so large that
( )

Let z,je¥* be nearest neighbor sites of V*. Consider the diamonds D(j\i) and
D{j]{j). Let s{j]

L be the event discussed in Proposition 4.5 for the diamond D{j\ί\
and denote by t{j]

L the analogous event of a connection between E{j\{j) and the
bottom of v4(

L

k)(i). These events are shown in Fig. 19.
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It is clear that ί̂ }

L is simply a reflection (through the plane P in Fig. 19) of the
event tfL for a diamond Df(j\ Hence μq(s^L) = μq(tfL).

By Proposition 4.5, we can choose J large enough so that μq-2A(s(j)i) = l
-iεzl^ Thus

hWl (4.37)
Then, by Lemma 4.2(b), we have

We claim that any configuration neIΉ{s{j)

Lr\t{j)

L) has at least JV/4/c points at
which a path emanating from D(j\i) overlaps a path emanating from Dψ(j) within
the box Λ^\i). (Recall that two paths are said to overlap if their projections
intersect.) Suppose, in fact, that in a given configuration neΩ, there are only
M < N/4k overlap points. To each point of overlap there corresponds a line of k
sites of JL*k. Consider the 4/c bonds parallel to the xy plane in the coboundaries of
these k sites. If we change n so that these 4/c bonds are not occupied, then the k sites
are effectively isolated from the rest of L*k. (In the dual language, this amounts to
surrounding these sites by a "chimney" of occupied plaquettes.) Thus, if we alter
the configuration n by at most 4kM < N bonds, then there are no points of overlap,
which means that the altered configuration cannot be in s{j]^nί^'L. Hence

Next suppose ne sj1'Lnίf](

L, so that there is at least one point where projections
of the paths intersect. If, in addition, all bonds parallel to the z axis at such a point
of overlap are occupied, it is clear that the event h(£j} occurs in the configuration n.
In light of this, and of the above observation on the minimum number of overlap
points for configurations in / ^ ( s ^ n ί ^ ) , one can show by reasoning along the
lines of Lemma 4.2 that

^ 1 - ε . D (4.39)

As remarked above, the events h{k) do not have the transitivity property which
is essential for indicators of connections on the underlying lattice lL*k. It is
important, therefore, to notice that in the previous proposition only J is required
to be large - with no constraints on L, as long as L > J. We shall use this freedom
to chose L even larger, in the construction of renormalized bond events which do
have the desired connectivity properties.

Definition. For ieV* we denote by U{k\ί) the event

U{k)(i) = {neΩ\all paths of occupied bonds which connect
dD{j\ϊ) with dD{k)(ι) are connected to each other
within Z)W(i)}. (4.40)

Remark. The event U{k\i) is not monotone in the sense of FKG, since it can be
destroyed by the addition of bonds.
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Proposition 4.7. Let q>pk. Then, for each fixed J,

Proof This is essentially a corollary to the proof of uniqueness in Theorem 4.4

[since for J fixed, there can only be a finite number of disjoint connections between

δDik\i) and dDf{ΐ)l •

Let us finally introduce the bond events which have all the desired properties.

Definition. Let ί , ;e¥* be a pair of neighboring sites of V* (with \i—j\= j/2), and
£> = {jj}. The renormalized bond event Bb is defined as follows:

Bb = Uik)(ι)nhik)n U{k)(j) (4.41)

It should be observed that if B{i j} and B{j V] both occur, then the diamond
D{j\ί) is indeed connected to DikXi'\ since both events contain U{k)(j).

We supress in our notation the obvious dependence of Bb on k, L and J.

Proposition 4.8. For each q > p(k\

lim μq{Bf) = \. (4.42)
L,J-> oo
(L>J)

Proof This follows immediately from Propositions 4.6 and 4.7. Π

Summary. The construction of the block bond variables is now complete.
Following are the main features of the resulting bond system.

1) First, by Proposition 4.8, the lengths J and L may be chosen so that the
bond events Bb occur with probability arbitrarily close to one. Thus, by going to
large length scales, we have effectively mapped a system of bonds on IL*k which is
near the critical regime into a new bond system on V* which is controlled by the
trivial high density behavior.

2) A novel property of the block bond variables is that despite the fact that
they are defined on a coarse scale, the existence of a connected path of "occupied"
bonds on ¥ * implies that there is a corresponding path of bonds on the underlying
lattice IL*fc which are connected in the "microscopic" sense.

3) Although the bonds of V* (i.e. the block bonds of IL*fe) are not inde-
pendently distributed, this lack of independence is only a local effect. Each bond
event Bb is correlated only with the bonds with which it shares a vertex, and is
independent of all the other bond events.

The feature 2) discussed above permits us to reduce the proof of Proposition
4.1 to a simple property of the renormalized bond system. To formulate it, we
denote by ¥ the dual lattice of V*. That is - the sites of ¥ are the centers of the
elementary cells of ¥ * , ¥ being isomorphic to Z2 and a translate of ¥ * . For a pair
of sites iJeV, we denote by Γ(ί,j) the event that there is a closed path of bonds in
¥ * which surrounds z, separating it from j , such that for each of the bonds, the
event Bb occurs. We now claim that to prove Theorem 4.1, it suffices to show
that the following is true.
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Lemma 4.9. // q>pk

c, then for some suitably large J and L there is a positive
constant κ = κ(q,k,J,L)>0 such that for each pair of sites i,jeΨ,

\mum^~^vί-κ\i-j[\. (4.43)

Reduction of Theorem 4.1 to Lemma 4.9. The event β(k\xv x2) which is discussed
in Theorem 4.1 is the existence of a bridge of occupied plaquettes between the
two linear segments which are formed by the pins d{k\ 0 and d{k)

2>0. Such a n e v e n t *s

not compatible with the existence of a closed loop of occupied dual bonds which
encircle one of the two pins, but not the other. It follows that if xv x2e2LZ then:

where iJeΎ are the lattice sites of ¥ whose Euclidean coordinates in IR2 are

\/2L 1 \γ2L
The claimed bound (4.43) implies, therefore, that (4.2) is satisfied, with

m— ]/2Lκ, whenever (xλ — x2) is a multiple of 2L. It then follows by an argument
which is strictly analogous to the proof of Proposition 2.5, that (4.43) holds for all
xx and x2, with the same value of m. •

Let us now consider Lemma 4.9. It is a statement about the existence of closed
loops of occupied bonds which separate two given sites, in a system of random
bonds whose density can be made arbitrarily close to one. The bound (4.43) which
is claimed there can be proved by a number of methods, which include:

1) A Peierls-type argument, with suitable attention to the lack of inde-
pendence. This difficulty can be circumvented by considering a sublattice, as was
done in a similar situation in [5].

2) An inequality which shows that the function 1 — μq(Γ(iJ)) is, in a certain
sense, "subharmonic," and thus decays exponentially. This path will be followed in
Sect. 4ii).

3) An argument in which one directly considers the scaling behavior of certain
bond events. It can be shown that if the bond system is sufficiently close to the
trivial fixed point, the scaling is exponential. We use such an argument to provide
a second proof of Lemma 4.9 in Sect. 4iii).

ii) A High Density Argument

In this subsection, we provide a proof of Lemma 4.9 by a simple "subharmonicity"
inequality. The inequality is analogous to the Griffith's third inequality, which has
been used by Krinski and Emery [11] to prove exponential decay of correlations in
Ising ferromagnets. In that context, the basic inequality was extended and the
method of its application has been improved in the works of Simon [12] and Lieb
[13].

First, let us denote for iJeΨ

τUJ=l-jίJίΓ(i,j)).

In order to describe τ . in simple terms it is convenient to associate with each
configuration of the bond events Bb, where b are the bonds of ¥ * , a set of
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b

Fig. 20. a Dependent bonds on V*. b Dependent bonds on '

complementary events Bb on the bonds of the lattice ¥ (which is dual to V*). Thus

Bb occurs, for b on ¥ , if the event Bb, does not occur for the bond b' of ¥ * which is

dual to b. Under the conditions which are referred to in Lemma 4.9, the

probability of B is very small.
It is easy to see that for iJeΨ, τ 7 is the probability that the site i is connected

to either j , or "infinity," by a path of bonds (of ¥) for which the events B occur.
Let us now determine the degree of interdependence of the bond events B (on

the lattice ¥). First we recall that a bond event Bb,, b' on ¥ * , is independent of all
the other bond events, except those which are associated with the six bonds which
form the coboundary of V (see Fig. 20a).

By duality, the bond event Bb is correlated only with those events which are
associated with the six bonds of ¥ which form the boundary of the two
"plaquettes" which share b (see Fig. 20b).

It is clear that Lemma 4.9 is equivalent to the statement:

Lemma 4.9'. Under the conditions of Lemma 4.9, there exists a constant C>0 such
that, for all U

τ. . ^ (4.44)

Here ||/—7ΊL denotes the lattice L00 norm of i—j; that is, if i = (iί,i2) andj = (jίj2),
then

\\ί-j\\oo=meix{\i1-j1l\i2-j2\}. (4.45)

In particular H/-/IL ^\i-j\/\/2.

Our proof is based on the following inequality:

Proposition 4.10. Let p denote the probability of a B bond event on ¥ . Then, for
every iJeΨ, iή=j,

(4.46)

where W(l) are fixed weights which satisfy

(4.47)

Proof τ j is the probability that i is connected to j , or to infinity, by a path of
bonds on which B occurs. Whenever such an event occurs, for i Φ7, then:
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•
Fig. 21. The event B{Uk]nTltj

1) The event B{Uk} occurs for at least one of the nearest-neighbors, keΨ,
of /(with | fc-i | = l). '

2) There is a site Z, with ||Z —z'H^ = 1, which is connected (in the above sense) to
either j or infinity, by a path which avoids all the other points ΐ with \\ΐ — z'H^ = 1.
We denote such an event by Ί[ (Fig. 21).

T h u s :

UhvU- ( 4 4 8 )
llMl

However, due to observations made above, B{iJi} and T^ are independent
events, and furthermore μq(T{)ύ^ι j Therefore (4.48) implies

Letting W(l) = ̂ , we obtain the desired result (4.46). Π

Proof of Lemma 4.9. The inequality (4.46) may be iterated by applying it to τZ J 5 as
long as lή=j. Each iteration adds a factor of (32p) which multiplies a normalized
average of the function τ.J9 which is everywhere bounded by 1. Since for z'Φj (4.46)
may be safely iterated ||i—jIL times> we obtain

τ u ^(32p) l | ι "- i ! K (4.50)

Choosing L and J large enough so that 32p< 1, we have a proof of Lemma 4.9r

(and thus Lemma 4.9), with C = -log(32p). D

Remarks. 1) A slight refinement of the above argument permits us to replace the
factor (32p) in (4.50), and in the derived value of C, by (20p).

2) As already mentioned, (4.46) is somewhat analogous to the Griffith's third
inequality for ferromagnets. The simple iteration argument which we used to
prove Lemma 4.9' is similar to one used by Simon [12]. The more general Simon-
Lieb inequality (for Ising ferromagnets) also has a counterpart in percolation
models, which has been noted by a number of people including B. Souillard-
F. Delyon and A. Sokal, and is described in the appendix of [14].
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Fig. 22. The event #(4,11)

1
Fig. 23. The event B(α, b)

Γ ( α + 2 b , b)

)r,(b)
^ ^

R(α + 2b,b)

_ / l 2 ( b )

Hi) A Rescaling Argument

We now offer a second proof of Lemma 4.9 in which the bond lattice V* is further
rescaled. This proof is the (destructive) counterpart of the proof of length law given
in Sect. 3ii). The latter uses rescaled plaquette variables to construct the event Wy

here, we shall use rescaled bond variables to destroy the event Wy.
We first establish some preliminary results which parallel those of Sect. 3ii). As

in Sect. 4ii), we fix k and present two-dimensional arguments in which we omit all
reference to the superscript (k).

Definition. Let r(a, b) denote an a x b rectangle of vertices of the renormalized
lattice V*

Here iί and i2 label coordinates along axes at 45° to those of the lattice lL*k (and
hence along the direction of the bonds of V*).

Let R(a, b) denote the event of a left-right crossing of r(a, b) by renormalized
bonds B with both vertices in the set r(a, b) (see Fig. 22).

We note, without proof, the following trivial observation.

Proposition 4.11. For every integer n^.

(4.52)

Next, we consider events in rectangles of the form r(a + 2b, b). Each such
rectangle is regarded as consisting of an inner rectangle, which is a translate of
r(a, b\ and two outer squares, which are translates of r(fe, b). We refer to the outer
squares as the left and right ends of r(a + 2b, b).

Definition. Let Ix(b) be the event of a top-bottom crossing of the rectangle
r(a + 2b, b) which lies entirely in the left end. Similarly, I2(b) denotes the analogous
event in the right end. We note that I^b) and I2(b) are translates and rotations of
R(b, b). We define the rescaled bond event (see Fig. 23)
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b

t

Fig. 24a and b. Connection of bond events

(4.53)

Remark. It is observed that the rescaled bond events ΊΆ(a,b) have the required
connectivity properties of bonds. In particular, if two rectangles of the same
dimension, r1 and r2, are placed side by side so that adjacent ends overlap, and if
the rescaled bond event IB occurs in both rectangles, then there is a left-right
crossing of the larger rectangle rίur2 (see Fig. 24a).

If r 1 and r2 are placed perpendicular to one another so that they have an end
region in common, then the occurrence of rescaled bond events in both rectangles
guarantees the existence of a continuous crossing from the left end of r1 to the
bottom of r2 (see Fig. 24b).

As is the case for rescaled plaquette events, bond events of different length
scales also have desirable connectivity properties. However, this feature is not
used in the proof of Lemma 4.9.

The bond events B(α, b) exhibits the following behavior under rescalίng.

Lemma 4.12. //, for some a and b,

with /?=1/18 and some λ<l, then

(4.54)

1-βλ2. (4.55)

Proof. We place three translates of r(a + 2b, b) side by side with ends overlapping
to form the longer rectangle r(3a + 4b, b).

If bond events lB(α, b) occur in all three rectangles (see Fig. 25), then the event
R(3a + 4b, b) occurs.
This gives us

μqlR(3a + 4b, &)] ̂  1 - 3βλ. (4.56)

Next we observe that the rectangle r(3a + 4b,2b) consists of two translates of
r(3α + 4έ>, b) which have no vertices of V* in common. Since the aforementioned
dependence of the bonds of V* only occurs among bonds which share a vertex, the
events of left-right crossings in the upper and lower halves of r(3α + 4b, 2b) are
completely independent. We obtain the estimate

(4.57)



Transition from Area Law to Perimeter Law 57

Fig. 25. Construction of R{3a + 4b, b) from three translates of B(α, b)

By translation invariance, μq\_Ii(2by]=μq{_R(2b,2b)']. Then, since the events
/1(2b) and I2(2b) occur in disjoint regions,

(4.58)

= l-βλ2. • (4.59)

Remark. Iterating the above inequality / times, we obtain

The last step in (4.58) follows from Proposition 4.11.
Thus, by Eqs. (4.57) and (4.58), we have

,2ιby]^l-βλ2 . (4.60)

Just as plaquette events of many length scales were used in the proof of perimeter
law, we shall use bond events of many length scales to prove Lemma 4.9. However,
it is also interesting to consider a lattice of block bonds IB(3zα, 2ιb) of uniform scale.
As / increase, the common region of adjacent bonds, which should be viewed as a
vertex on the rescaled lattice, becomes an increasingly smaller part of a given bond
event. Thus the interdependence of bonds emanating from the same vertex
becomes progressively weaker as the lattice is further rescaled.

Proof of Lemma 4.9. Let UjeΨ. By the equivalence of the norms \ί—j\ and ||ι—jlL?
it suffices to prove that there exists a constant C > 0 such that

yΊIJ (4.61)

By Proposition 4.8, there are length scales J(k) and L(k) such that μq(B) > 31/32.
Taking B(l, 1) as the first rescaled bond event, we have 17/18 </^[IB(l,-l)] = 1

-βe~c with /? = 1/18 and C>0. Hence, by Lemma 4.12, the probability of the /th

rescaled bond event is

μq{B{3\2*)] ^l-βe~2lc. (4.62)

Let G(ϊ) be a fundamental ringlet of four bond events IB(3Z, 2ι) (see Fig. 26).

We have

, - 2 ' C . n-2ιC (4.63)

Notice that if a ringlet G(ί) surrounds the vertex i (and not the vertex j \ then the
event Γ(iJ) occurs. The number and scales of the ringlets that can be used to
efficiently separate i from; is determined by the binary expansion of ||i—jIL' i e

(4.64)
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Fig. 26. The event G{ΐ)

Fig. 27. Ringlets separating i from j

Denoting the annulus in which the event G(ϊ) may occur by A(l\ it is clear that
disjoint translates of all annuli A(lt) with i ̂  n may be inserted between i and j (see
Fig. 27).

The probability of the occurrence of at least one of the events G(/;) is given by

A*« -CΣ2"

= l-exp[-C| | i- ;Ί |J ,

which is the lower bound for Γ(i,j). •

(4.65)
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5. Summary of Results and Open Problems in Three Dimensions

In this section, we briefly review our principal results on the behavior of (Wy}p in
three dimensions and discuss our conjecture on the equality of critical points for
percolation. We also contrast the critical behavior of (Wy)p with that of (Wy°)p

First, however, we would like to point out that perhaps the most interesting
question is the existence, and the properties of the continuum limit for loop
variables. An essential step for the analysis of the scaling limit is to determine
whether the surface tension, α(p), vanishes when p^pc. (Our guess is that it does.)

Let us now recall the definitions of the two critical bond probabilities which
characterize the surface dominated and dual percolation regimes. The former is πc,
the point at which the expected size of bond clusters becomes infinite and the latter
is ρc, the limiting value of the quadrant bond percolation threshold for layers of
increasing thickness.

We have shown that there exist constants 0 < c(p), oc(p) < oo such that

f e X p C c ( p ) P e r ( 7 ) ] ; P > ί π < ( 5 1 )
lexp[-φ)Area(?)]; p<l-ρc.

 { ' '
The perimeter law behavior, which holds for planar loops, follows from
Proposition 2.3, Theorem 3.2 and the discussion in Sect. 3iii). The area law
behavior, which we proved for rectangular loops, is a consequence of Propositions
2.3-2.5 and the corollary to Theorem 4.1.

A question which remains to be addressed, in the analysis of the model's phase
structure, is our conjecture on the equality of critical points for three-dimensional
percolation:

Let us clarify the relationship between Eq. (5.2) and other long-standing conjec-
tures in percolation theory.

The equality πc = pc, expected in any dimension, is a very natural conjecture.
The same equality has been proved in two dimensions [4, 5, 7] and is usually
assumed true in non-mathematical papers.

The conjectured equality pc = Qc requires more discussion. If this is correct, then
whenever bonds percolate on the full lattice, there is also a sufficiently thick finite
layer in which they percolate. We should remark that the analog of pc = Qc

concerning percolation in strips is obviously false in two dimensions. However,
this is clearly a consequence of the fact that one is the lower critical dimension for
percolation and has no bearing on the three-dimensional conjecture. As we shall
show below, the equality pc — ρc is in fact related to the widely believed conjecture
that the infinite cluster is unique in three dimensions.

The final equality, ρc = ρc, which says that the limiting value of the bond
percolation threshold for layers is the same as that for quadrant layers, is also
quite reasonable. In two dimensions, which is simply a layer with fc = l, the
analogous equality (i.e., p]=pl) is well known, and we expect that the limiting
percolation thresholds also have this property.
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Given the results of Sects. 2-4, let us consider the implications of the
conjectured equality (5.2). First, Eq. (5.1) would then imply that (Wy}p undergoes a
sharp transition from area law to perimeter law behavior at the critical point p = 1
-πc = l-ρc.

We claim that this conjecture also implies that the three-dimensional bond
connectivity function, τ .(p\ exhibits a transition at the same critical point as
(Wy}p. This follows from the asymptotic behavior:

ίexp[-m(p)| i-j | ]; p>l-πc

The exponential decay for p>l — πc has been shown by Kesten [10] (see also
Aizenman and Newman [14]). The constant behavior for p < 1 — ρc is easily proved
from the results of Sect. 4i). The FKG inequality implies that τ. j is bounded below
by the square of the probability of events of the form Ξ{k\ which, by Proposition
4.2, do not decay to zero for p < 1 — ρk.

We may regard the area law for (Wy}p as a two-volume law and the perimeter
law as the corresponding boundary law. Similarly, the exponential behavior of τ. .
should be viewed as a one-volume law, with the asymptotically constant behavior
as its corresponding boundary law. If our conjecture is correct, then (Wy}p

exhibits volume behavior whenever τ 7 exhibits boundary behavior and vice versa.
In other words, dual objects in three dimensions are always in opposite phases.
The d-dimensional version of this phenomenon is discussed in Sect. 6.

The features discussed above are closely related to uniqueness of the infinite
cluster. In Sect. 4i), we proved that, for p < 1 — pk

c, the infinite cluster in the /c-layer
IL*fc is unique (Theorem 4.4). It is easy to extend this result to uniqueness of the
infinite cluster on the full three-dimensional lattice I Λ To see this, we follow
exactly the proof of Theorem 4.4, replacing the boxes ΔN by cubes Af

N, for which
the probability of the corresponding events A'N is bounded above by 1 — [α(g)]4

<1.
The above result shows that the equality pc = Qc = Qc implies the long-standing

conjecture that, at least in three dimensions, the infinite cluster is always unique.
Finally, let us discuss the quantities (Wy°}p and (Wf}p, introduced in Sect. 2.

Since Wy C Wr we have < Wy}p ^ < Wγ}p. Hence whenever < Wy}p obeys an area law,
so does (Wγ°)p. Moreover, in Sect. 3, we explicitly showed that (Wy°)p obeys a
perimeter law for p < 1 — πc by constructing manifestly orientable surfaces. Thus, if
our conjecture πc = ρc is correct, (Wγ}p and (Wy}p must have the same transition
point.

However, we expect that (Wy}p should have a transition from area to
perimeter law at a strictly larger p than the critical value ϊor (Wy}p. To see this,
note that percolating chains of occupied bonds which interlock y only permit the
formation of surfaces with handles (see Fig. 2). Thus when chains percolate, it is
likely that < Wjf ) p obeys an area law. Since connected chains of occupied bonds are
more probable than connected paths of occupied bonds, one expects that infinite
chain clusters should form at a bond probability strictly smaller than pc. Indeed, in
two dimensions, it is known that different notions of connectedness (e.g., star vs.
nearest neighbor) lead to different percolation thresholds [15, 16].
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6. Higher Dimensional Generalizations

In this section, we examine higher dimensional analogs of the systems treated
previously. First, in Subsect. i), we consider the system of random plaquettes on
7Ld. In Subsect. ii), we study the percolation of random r-cells in d > r dimensions
and examine the generalization of the Wilson loop for these systems. In the final
subsection, we briefly discuss the possible phase structure of percolation models in
d>3.

i) Tree Approximation Bounds for Plaquettes on 7Ld

Consider a system of plaquettes distributed with uniform density p on the lattice
Zd. Given a loop γ of edges on ΊLd, the event Wd is defined as in Eq. (2.3).

We immediately observe that (Wd}p has a priori upper and lower bounds of
perimeter and area law behavior for all d^2.

Proposition 6.1. For every rectangular loop y of edges on TLd

exp[- |logp| Area(y)] ^ < ^ / > p ^ e x p [ - c»Per(y)], (6.1)

where φ) = \\og[_\-{\-p)2{d-l)-\\.

Proof See Proposition 2.3. •

The following theorem shows that, for any d ̂  2, an area law phase exists below
some nonzero plaquette density.

Theorem 6.2. For any loop y of edges on TLd

< Wd}p S exp[ - cd(p) Area(y)], (6.2)

with cd(p)>0 whenever p<

}p

—
2(α—

Proof Let eey be an edge of y and consider the 2(d—l) plaquettes in the
coboundary of e. For each Qede, we define the new loop yQ = yΔdQ.

Clearly, if the event Wd occurs, then there is at least one Qede such that (1) Q is
occupied, and (2) there is a surface spanning yQ which avoids the plaquette Q.

Let the former event be denoted simply by Q and the latter by Wd

Q. Thus

Wd= U (QnWfQ), (6.3)
Qsde

so that

pύ Σ
QsSe

= Σ KP
Qede

£ Σ P < < Λ (6 4)
Qede

The second step in (6.4) follows from independence of Q and Wd

Q, and the final
inequality is obtained by relaxing the restriction that the surface spanning yQ must
avoid the plaquette Q.
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Whenever p< -, Eq. (6.4) may be rewritten:
2 ( d l )

| (6.5)

where e~Sd{p) = 2(d— l)p< 1. Observe that the term in brackets above is a normal-
ized sum of probabilities.

The above inequality may be iterated by applying it to (Wf }p, as long as the
"loop" yQ (which may consist of several disjoint loops) has at least one plaquette in
its minimal area. Thus (6.5) may be safely iterated Area(y) times. Bounding the
final normalized sum by one, we obtain

<W?>J,^exp[-cd(p)Area(y)]. D (6.6)

Corollary. For any rectangular loop y of edges on TLd

<W?>p-exp[-αd(p)Area(y)], (6.7)

"l
with 0 < ad(p) < oo whenever p <

Proof. This follows immediately from Propositions 2.4 and 2.5 and the above
estimates. •

Next we observe that (Wd}p for d^3 is bounded below by (W3}p, the
probability that the loop is spanned in a three-dimensional subspace. By the
results of Sect. 3, this implies that (Wf}p has a lower bound of perimeter law
behavior whenever p > 1 — πc.

The above reasoning in fact proves that for d ̂  3, there is always a perimeter
law phase. A stronger result is established in the following theorem.

Theorem 6.3. For any rectangular loop y on Έd, d ̂  3,

<W?>p^exp[-cd(p)Per(y)] (6.8)

with c'd(p) < oo whenever

p>p(d)~(const)d-115. (6.9)

Proof. As remarked above, whenever p>\ — πc, we obtain a lower bound of
perimeter law behavior by considering onfy those configurations for which y is
spanned in some three-dimensional subspace of ΊLd. We shall improve this estimate
by showing that if plaquettes have some density p on Zd, then there is an effective
plaquette density greater than p on a three-dimensional subspace of TLd.

For simplicity, let us assume that d = 3N with N ̂  2. Then we may regard 7Ld as
the product [Έ x ZN~1]3, so that to each of the three orthogonal directions in Έ3,
we associate an extra N— 1 dimensions.

Let x, y, and z denote the axes in the three-dimensional subspace. Focus
attention on a single plaquette Q in the xy plane, and denote by tv ...,ί i V_1 axes
along the extra directions associated with this plane.
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Either the plaquette Q is occupied or, if not, it may be "effectively occupied" by
events which occur in the extra N — 1 directions. To see this, consider the cube
which is directly above Q in the tt direction and for which Q is the bottom face.

Denote by q1 the set of five plaquettes which form the five faces, excluding β, of
the aforementioned cube. Similarly, consider the cubes above Q in the other N — 2
directions, t2,...,tN_1, and denote by ^--ΛN-I t n e corresponding sets of five
plaquettes.

Let S be any finite collection of plaquettes, excluding g, in the three-
dimensional subspace. Clearly, for every z,

d(SυQ) = d{SuqJ. (6.10)

Thus an "effective plaquette event," EQ, for β, is that either Q is occupied, or if it is
not occupied, then in at least one of the N—l orthogonal directions, the five
plaquettes in qt are occupied. We have

Clearly, the event that the plaquettes in q. are occupied is independent of any
events in the three-dimensional subspace.

In order to construct mutually independent events EQ for every plaquette Q in
the xy plane, the plane should be viewed as a "checkerboard" of even and odd
plaquettes. Then for even plaquettes, the relevant cube events are defined in the
positive t directions, while for odd plaquettes, they are defined in the negative t
directions.

Similarly, we may use these extra N—l directions to augment the probabilities
of plaquettes in all planes parallel to the xy plane.

Finally, the remaining 2(N— 1) extra dimensions are used to enhance the
probabilities of plaquettes parallel to the xz and yz planes.

In this construction, all plaquette events EQ are independent. Thus we have an
effective plaquette probability

Λff = p + ( 1 - P ) [ l - ( 1 - P 5 ) ( d ~ 3 ) / 3 ] (6-12)

for a three-dimensional problem. Therefore, whenever P e f f > 1 — πc, the system is in
the perimeter law phase. It is not difficult to show that this condition is satisfied if

p > ( 3 | l o g π c | ) 1 / 5 ( ^ - 3 ) - 1 / 5 . (6.13)

We note that if d is not a multiple of three, the estimate in (6.13) holds with d
replaced by the largest multiple of three less than d. •

ii) Cells of Higher Dimension

The cubic lattice 7Ld contains d elementary objects (excluding sites) which are
candidates for stochastic-geometric study.

Let us consider the Bernoulli system of elementary r-cells on Έd, d^r. Cells are
occupied with homogeneous probability p and vacant with probability 1 — p. Two
r-cells are said to be connected if they have a boundary in common. (We note that,
at least with this definition of connectedness, the problem of sites on Zd is trivial.)

It is clear that r-cell systems at density p are dual to (d — r)-cell systems at
density 1 — p.
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Although the onset of infinite connected clusters of r-cells is a useful
characterization of the phase structure in some contexts, such infinite clusters do
not necessarily reflect the r-dimensionality of their elementary constitutents. As an
alternative, we propose that the asymptotic behavior of the generalized con-
nectivity event (τ. . for bonds, Wy for plaquettes) may serve as the order parameter
which distinguishes high and low density phases of the system.

The connectivity event, (DΓ)
d, for r-cells in d dimensions is defined as follows.

Given a closed (self-avoiding) surface Γ, composed of (r— l)-cells, the event (D Γ)
d is

said to occur if there exists a finite collection of occupied r-cells on Zd, the
boundary of which is Γ.

We shall say that (DΓ)
d obeys a volume law if

<(DΓYr}p ^ e x p [ - (const) Vol(Γ)], (6.14)

where Vol(Γ) is the minimum number of r-cells whose boundary is Γ. Similarly,
{DΓ)

d is said to obey a boundary law if

<(DΓYr\~expl- (const) Bnd(Γ)], (6.15)

where Bnd(Γ) is the number of (r— l)-cells in the surface Γ.
Analogs of all the results which were proved for plaquettes (2-cells) on TLά in

Subsect. i) are easily established for random r-cells.
First, we observe that r-cells in r dimensions always obey a volume law. Hence,

at least in terms of the order parameter ((DΓ)
d}p, there are only d—\ nontrivial

models in d dimensions.
We again obtain a priori upper and lower bounds:

Proposition 6.4. For any hyperrectangular surface Γ of (r— l)-cells on Έd, d^r

exp[ - |logp| Vol(Γ)] S <(DΓ)
d

r}p ^ exp[ - cd{p) Bnd(Γ)], (6.16)

where c%p) = | log[ l-(1 - p ) 2 [ d " ( r - 1 ) ] ] | .

Proof See Propositions 2.3 and 6.1. Π

Next we note that for any d^r, random r-cells on TLd exhibit volume phase
behavior below some nonzero density.

Theorem 6.5. For any closed surface Γ of (r—l)-cells on Zd, d^r,

<(DΓ)
d

ryp £ exp[ - c%p) Vol(Γ)] (6.17)

with cd(p) > 0 whenever p < — —.
2[α —(r—1)]

Proof See Theorem 6.2. •

Corollary. For any hyperrectangular surface Γ of (r— l)-cells on Έd, d^r,

iiPrt >P ~ e x P[ - <(P) V o l (^) ] (6.18)

with 0 < ocf(p) < co whenever p < — - — —-.
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The constant αj?(p) is the analog of the surface tension (or string tension).
To obtain estimates on the density above which the system exhibits boundary

law behavior, we parallel the strategy employed for plaquettes in Subsect. i). First,
we examine the random r-cell model in d = r +1 dimensions, which has as its dual
the bond model m7ίr+ι. Although we do not know the critical probability for the
onset of boundary law in these systems, it is easy to obtain an upper bound on this
probability (Proposition 6.6). This bound will then serve as an estimate for the
onset of boundary law behavior in all d^:r+1. Finally, in Theorem 6.7, we shall
employ the method of dimensional enhancement used in Theorem 6.3 to improve
this estimate.

Let πd denote the critical bond density at which the expected size of bond
clusters on Έd diverges.

Proposition 6.6. For any hyperrectangular surface Γ of (r — l)~cells on Έd, d~^

<(DΓ)
d

rypU-cr

r

+1(p)Bnά(Γ)-] (6.19)

with cr

r

+1(p)<GO whenever

^ ^ - < + 1 (6-20)

Proof First we note that the inequality

which is precisely the mean field bound, is easily derived using either a Lieb-Simon
inequality or a Peierls' argument.

However, if the r-cell density satisfies p > 1 — πr

c

+1 (which implies that the bond
probability is less than πr

c

+ \ and hence that the expected size of bond clusters is
finite), then an argument exactly along the lines of Sect. 3i) shows that the r-cells
are in the boundary law phase. •

Theorem 6.7. For any hyperrectangular loop of (r — l)-cells on Zd, d^r+1,

<(DΓ)
d

r)p^[-cd

r(p)Bnd(ΓK (6.21)

with cd(p) < GO whenever

P > Hd) = Dog[2(r + 1)]]
ll(2r

Proof We use an argument exactly along the lines of Theorem 6.3. First, we treat
the case in which d is a multiple of r + 1 . We find that the effective r-cell probability
for the (r+ l)-dimensional system is

( l - p 2 ' + T - ( r + 1 ) I / ( r + 1 ) ] . (6-23)

Then, by Proposition 6.6, the system is in the boundary law phase whenever P e f f

> 1 — —,——— This is satisfied if

l/(2r+l)

(6.24)
d-(r+ί)
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If d is not a multiple of (r +1), we replace d by d, the largest multiple of r + 1
smaller than d. •

This theorem shows that, for fixed r, the boundary phase dominates as d tends
to infinity.

in) Comments on the Phase Structure in Percolation Models

Here we note that for a system of r-cells in d > 3, it remains to be shown whether
the system is always in opposite phases, in the sense that boundary law for r-cells
at density p implies and is implied by volume law for (d — r)-dells at density 1 — p. It
has been proved that this is indeed the case for d = 2 [3,4,6]. Modulo our
conjecture, this result is also true in d = 3. The non-existence of intermediate
phases is the natural generalization of Harris' theorem [6] and its converse [17].

The conjecture that dual objects are always in opposite phases at first seems to
conflict with our result (Theorem 6.7) that in large dimensions, r-cells obey a
boundary law at asymptotically low density. However, Theorem 6.7 does not
imply that r- and (d — r)-cells are simultaneously in boundary phase. The correct
interpretation is that for d>r, (d— r)-cells are typically in the volume phase since
their codimension is relatively small.

Of particular interest are random - cells in even dimension d. Clearly, if no

intermediate phase exists in such a self-dual system, the transition point is p = 1/2.
The most promising model for future study is random plaquettes in d = 4.

7. Relation to Interacting (Gauge) Systems

In this section we would like to briefly point out that stochastic geometric effects
like those analyzed in this paper are of utmost relevance for very familiar
interacting systems. We also describe a possible surface "roughening transition" -
an effect which is related to the roughening transition purported to occur in the
three dimensional Ising model. In either system, the actual proof of the existence of
a transition is still an open problem.

V < Wγ} and the Wilson Loop

Geometric effects play a role in various systems, and can be presented in a number
of ways. The example which will be mentioned here is the Z(2) lattice gauge theory.
Its basic variables are the edge spins, σb, which take values in Z(2) = {— 1, +1}. The
action is the sum over plaquettes:

Q bedQ

The action, and the corresponding Gibbs state, are invariant under the gauge
transformation σ{i j}^{— l)kι + kjσ{i jy Due to this symmetry, the single-spin expec-
tation values, E(σb), vanish. The gauge invariant quantities are generated by the
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variables

σ y = E K (7-2)
bey

which are associated with loops of lattice edges.
Of central interest in this model is the expected value of the "Wilson loop"

variable σy, for large loops y. The area law for this expectation corresponds to a
phase of the gauge field in which static charges are "confined" - being bound by a
linearly growing potential, whereas in the perimeter regime their dissociation
energy is finite.

The analogy between the asymptotic behavior of the Wilson loop variable to
(Wy) is not accidental! It turns out that E(σy) is directly related to {Wy}, albeit in
a system of interacting plaquettes.

The main part of the interaction is a constraint which projects the Bernoulli
measure on the ensemble of those configurations whose occupied plaquettes form
closed surfaces, i.e. configurations which have no boundary [in the sense of Eq.
(2.2)]. The additional interaction, which is needed for an identity between E(σγ)
and (Wy}, is far less singular, and may even be entirely eliminated by a method
which involves duplication. The result is an exact relation, for whose details, and
some applications, the reader is referred to [8].

ii) A Roughening Transition

A geometric representation of a Έ(2) system occurs already at the level of the Ising
model. In fact, one of the model's properties which has not yet been fully
elucidated is the "roughning transition," which in d = 3 dimensions is purported to
occur strictly below the critical temperature Tc. The transition is manifested in
the destabilization of the "interface" between the two phases. A stable phase
coexistence is described by a Gibbs state which is not invariant under translations.
At low temperatures (and zero magnetic field) such a state can be induced by
Dobrushin's anti-symmetric ( + / —) boundary conditions [18]. At a temperature
7^ the interface destabilizes, and the ( + /—) state becomes translation-invariant.
We shall now describe a possible phenomenon in the random plaquette system,
which offers an analog of the above transition.

Let Λn = [ — n,ri]3CZ3 be a three-dimensional cube, whose boundary we
partition into

and a similarly defined dΛ~. The intersection

ϊ (7.4)

is a loop lying in the {z = 0} plane.
We shall discuss random configurations of plaquettes in Λn, conditional on the

event Wn - which is said to occur if there is a subset of "occupied" plaquettes,
in Λn, which forms a surface S with dS = yn.

As in the bulk of this paper, we associate with each configuration of plaquettes
of Λn a complementary configuration of bonds of the dual set Λ*. For each site
xeΛ*, let T^n denote the event that there is a path of occupied bonds which
connects x with the dΛ* half of the boundary. T~n is defined analogously, with
dΛ7.
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Clearly, Wn is not compatible with the occurrence of both T~n and T^n. We
now propose to consider the quantities

τp,n(x) = μp{T+J Wn)-μp(T-n\ Wn), (7.5)

and

τ p (x)=l imτ p π (x) , (7.6)

where the probabilities refer to the Bernoulli ensemble of plaquettes of density p,
conditional on the event Wn.

For p > 1 - pc:

zp{x) = 0 for every x, (7.7)

for the simple reason that the dual bonds do not percolate. An application of the
FKG inequality shows that each of the two terms in (7.6) vanishes in the limit
n->oo.

However, for p<l — pc we do not expect the two terms in (7.6) to vanish
individually. Here the vanishing of τp( ) would instead be an indication of a
nontrivial cancellation. Such a cancellation should occur precisely when the
separating surface, the existence of which is imposed by the conditioning on Wn,
fluctuates (in the limit n->oo) away from every fixed point x. The analogy with
Dobrushin's result for the Ising model suggests that at sufficiently small p (and
d > 2) the surface remains tight - developing only local fluctuations, and

τ p (x)φ0. (7.8)

We introduce therefore the roughening density, pR, as:

PΛ = sup{pe[0,l] |τ | ,(.)φ0}. (7.9)

A roughening transition is said to occur if pR obeys the strict inequalities

< 1 - P C . (7.10)

The sense in which the quantities τ(x) and pR are analogous to the Ising models
< σ x ) + and 7^ should be clear from the geometric representation of the latter
in [8]. A proof of (7.10), which is of an independent interest, may shed some light
on the general phenomenon of surface roughening.

References

1. Polyakov, A.M.: Quantum geometry of bosonic strings. Phys. Lett. 103B, 207 (1981)
2. Durhuus, B.: Quantum theory of strings. In: Lecture Notes, Nordita-82/36, and references therein
3. Kesten, H.: On the time constant and path length of first-passage percolation. Adv. Appl. Prob. 12,

848 (1980)
4. Kesten, H.: The critical probability of bond percolation on the square lattice equals \. Commun.

Math. Phys. 74, 41 (1980)
5. Russo, L.: On the critical percolation probabilities. Z. Wahrscheinlichkeitstheorie Verw. Geb. 56,

229 (1981)
6. Harris, T.E.: A lower bound for the critical probability in certain percolation processes. P. Camb.

Philos. Soc. 56, 13 (1960)



Transition from Area Law to Perimeter Law 69

7. Wierman, J.C.: Bond percolation on honeycomb and triangular lattices. Adv. Appl. Prob. 13, 293
(1981)

8. Aizeman, M.: Surface phenomena in Ising systems and Έ(2) gauge models (Geometric analysis,
Part III) (in preparation)

9. Fortuin, C, Kastelyn, P., Gίnibre, J.: Correlation inequalities on some partially ordered sets.
Commun. Math. Phys. 22, 89 (1971)

10. Kesten, H.: Analyticity properties and power law estimates of functions in percolation theory. J.
Stat. Phys. 25, 717 (1981)

11. Krinsky, S., Emery, V.: Upper bound on correlation functions of Ising ferromagnet. Phys. Lett.
50A, 235 (1974)

12. Simon, B.: Correlation inequalities and the decay of correlations in ferromagnets. Commun. Math.
Phys. 77, 111 (1980)

13. Lieb, E.: A refinement of Simon's correlation inequality. Commun. Math. Phys. 77, 127 (1980)
14. Aizenman, M., Newman, C.: Tree diagram bounds and the critical behavior in percolation models

(in preparation)
15. Higuchi, Y.: Coexistence of infinite (*) clusters. Z. Wahrscheinlichkeitstheorie Verw. Geb. 61, 75

(1982)
16. Kesten, H.: Percolation theory for mathematicians. Boston, Basel, Stuttgart: Birkhauser 1982
17. Russo, L.: A note on percolation. Z. Wahrscheinlichkeitstheorie Verw. Geb. 43, 39 (1978)
18. Dobrushin, R.L.: Gibbs states describing coexistence of phases for a three-dimensional Ising

model. Theor. Prob. Appl. 17, 582 (1972)

Communicated by A. Jaffe

Received June 16, 1983






