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Abstract. We consider Bernoulli measures of parameter ÷ e [0, l /2] on the space {0,1}S where
S is a finite set. We prove some new correlation inequalities and monotonicity properties of
these measures, related to the natural group structure of the space. One peculiar feature of these
inequalities is that they are preserved by conditioning the Bernoulli measures to a subgroup; in
this way we can show that some basic techniques in Statistical Mechanics naturally fit in this
scheme.
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1. Definitions and main results

We are interested in probability measures on the space Ù8 = {0, l }s, where S is a finite
set. In particular we shall consider the Bernoulli probability measure of parameter x,
which we shall denote by ì÷.

The set Qs has a natural order structure, which allows to define the notion of
increasing (or decreasing) events. Harris [1] first remarked that if the events El9 E2

are both increasing (or both decreasing) then

Fortuin, Kasteleyn and Ginibre [2] generalized Harris' inequality (1.1). The notion
of F.K.G. measure and F.K.G. order between measures can be summarized s
follows. A probability measure ì is F.K.G. if for any two increasing events Ei and E2

(l.la) ì(ÅßçÅ2)>ì(Åé)ì(Å2).

1t was proved in [2] that a sufficient condition for the F.K.G. property is the
following inequality (which can be easily verified in the case of Bernoulli measures):

(1.2) Õó1? ó2 e Ù8 ì(óß u ó2)ì(óß ç ó2) > ì(óé)ì(ó2),
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402 C. Cammarota, L. Russo

(where we have identified the elements of Ù5 with the subsets of S). Besides Bernoulli
measures, an important class of F.K.G. measures which satisfy (1.2) can be obtained
by considering finite volume Gibbs measures; for example if S is an hypercube in Zv

condition (l .2) is satisfied by the Gibbs measures of the ferromagnetic n.n. Ising
model at external field h and inverse temperature â, ì^â.

If ìß and ì2 are F.K.G., ìÀ precedes ì2 in the F.K.G. order if for any increasing
event E

(1.3) ìé(Å)<ì2(Å).

It turns out that the measures ì÷ and ìÌ are respectively F.K.G.- increasing in Ë: and
in h (for fixed ).

In this paper we shall develope a scheme strongly analogous to the one summarized
so far by considering, instead of the lattice structure of Ù5, its group structure. If we
identify the elements of Qs with the subsets of 5, the natural group Operation can be
defined s the Symmetrie difference between subsets (equivalently one could consider
the multiplicative group structure of { — l, 1}S).

More precisely we propose the following definitions:

Definition 1.1. A probability measure on Qs is G-regular if for any two subgroups of
i2s, G! and G2

(1.4) ì(GßnG2)>ì(Gß)ì(G2).

Definition 1.2. The measure ìß is G-smaller than ì2 if for any subgroup G of Qs

(1.5)

Definition 1.3. The measure ìß is strongly G-smaller than ì2 if for any pair of
subgroups of s, G^ and G2, such that Gt c G2

Our main result is contained in the following theorem:

Theorem 1.1. Ifx e [0, ^] and F is a subgroup ofQs, the measures ì÷ and ì÷( \F) are
G-regular and strongly G-decreasing in x.

Since it is easy to obtain some Gibbs measure (for example in the case of a zero-field
n.n. Ising model) by conditioning to a subgroup the Bernoulli measure, Theorem 1.1
has some interesting consequences in Statistical Mechanics; in particular it implies
the following corollary:

Corollary 1.1. The measures ì0>â are G-regular and strongly G-increasing in .

Corollary 1.1 can be considered s a generalization of the Griffiths' inequalities [3].
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We remark that Baumgartner [4] recognized the relationship between the group
structure of Qs and Griffiths' inequalities. Gruber, Hintermann and Merlini in their
book [5] also exploited the natural group structure of Ù8. The direction of our work
is, in a sense, complementary to the one in [5]: a large class of Systems is there studied
by using Statistical-Mechanical and group-theoretical tools, whereas our main result
amounts in recognizing the simple property of the Bernoulli measure expressed by
Theorem 1.1 s the basis of some Statistical-Mechanical techniques.

See. 2 contains our results concerning unconditioned Bernoulli measures;
Bernoulli measures conditioned to a group are considered in See. 3, where the proof
of Theorem 1.1 is completed by using a generalization of (1.2). Some applications to
Statistical Mechanics (in particular to the Ising model and to gauge models) are in
See. 4.

2. Regularity and monotonicity of Bernoulli measures

In this section we prove that the Bernoulli measues ì÷ are G-regular and G-ordered
for ÷ E [0, £]. We first prove that for any group G, x(G) is a not increasing function
of ÷ e [0,£]. Indeed we have a stronger result: ì÷(ï) has derivatives of alternate sign
i*1 [0> i]· The G-regularity condition is proved at the end of the section.

We begin recalling the basic properties of the groups we use.
An element ù e Qs is a sequence of O's and l's on S which we shall identify with the

subset of ie S such that ù (i) = 1. Qs is a group with respect to the Operation of
Symmetrie difference of two elements ùé and co2, that we denote c^ · ù2. One can
compute the product of two configurations of O's and l 's by using in each site the rule
0 - 1 = 1 - 0 = 1 ,0-0 = 1 - 1 = 0. Thj null configuration corresponding to the empty
set is the identity of the group and so each element is its own inverse.

If G is a subgroup of Qs the binary relation ~ in Qs defined by ù1 ~ ù2 if and only if
ù é - ù2 e G is an equivalence relation. The elements of the partition of Ù5 so
generated are the cosets of the group G. The group itself is an element of the partition.
Any coset L different from G is so disjoint from G and is given by

L = ó - G = {a e s| á = ó · ù, ù e G}

for any ó e L. It is also easy to see that G and L have the samecardinality: \G\ = \L\.
If H and K are two cosets of the group G we put

(2.1) H - K = {ùåÙ8\ù = ùß · ù2, cole //, ù2 eK} .

H - Kis a coset of G. The set of the cosets of G is a group with respect to the Operation
just defined. The identity is the group itself.

Let ìñ. be the probability measure on Qh ieS, defined by ìÑß (l ) = /?£,
ìñß (è) = l — pi9pi e [0,1]. If p = (PH i e 5), ìñ denotes the measure on Ù8 product of
the ìñ. 's. In the following we shall continue to use the notation ì÷9 intoduced in sec. l,
for the measure ìñ where pi — x, V é e S.
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If ù 6 Ù5, we denote by coc the complement of ù in S and we put

Ð Á» ß ß ù ö Ï
ieo)

l, if ù = 0

where 0 denotes the null configuration. We have

= ñù Ó Ï

If E c s

ìñ(Å)= Ó Ó /^'(l
eoeJE ^cwc

(2.2) = £ /^÷ó(1 - 2^;
(TcS

where we define if á 6 Ùó, ó á S,

where ùÜ is the configuration of £2S that coincides with ù in 8\ó and á in ó. In
particular JBj = ̂  and

0 if á
Ù,, if

If G is a subgroup of Ù8,Ç and ' are two cosets of G (which in particular can
coincide with G) ó c S and a, /? e i2ff the following Statements hold:

(2.3a) GO is a subgroup of Ù5\ó; all the G£, //J, (/i · K)l which are nonempty are
cosets of GO (in particular they have the same cardinality s GQ);

(2.3b) Á Ú Ö 0 , Á ? Ö 0 => H;'Kj = (H'K);. ',

(2.3c) |GJ||(jy-^.%I^WI|A?|.

(2.3a) is a direct consequence of the definitions. In order to prove (2.3b) we note that
Hl · K c (/f · #)«.£. By hypothesis both are nonempty; (2.3a) then implies that
both are cosets of GO, so that the inclusion must hold s an equality.

In order to prove (2.3c) we note that if one of the sets //« and K is empty the
inequality is trivially true. In the other case we apply (2.3a) and (2.3b) and (2.3c)
follows s an equality.
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If G is a group and H a coset of G different from G, we remark that it is ì0 (G) = l ,
= 0 and

Lemma 2.1. If G is a group, H a coset of G and p e [0, |]s then

(2.4) ìñ(à)>ìñ(Ç).

Proof. We use eq. (2.2) for G and H and we get

By using (2.3 a) we get V ó, |Go| - \Çæ\ > 0 and this concludes the proof.

In the sequel we shall need the following simple consequence of Lemma 2.1:

Lemma 2.2. If G is a group, H and K cosets of G and p e [0, ̂ ]s then

(2.4a) ìñ(£) + ìñ(Ç · Ê) > ìñ(Ç) + ìñ(Ê) .

Proof. This lemma can be deduced from the previous one simply remarking that if
H and K are nonempty, H u K is a coset of the group G u (H · K).

We remark that ìñ(Å%) does not depend on the /?f's, /e ó and we define

\dP;

Proposition 2.1. If G is a subgroup of Os, ó ci S and p e [0, ̂

(2.5)

In particular, if pi = ÷, ÷ e [Ï, À],

(2.6)

Proof. We first give a simple proof of (2.5) in the cases ó = {/} and ó = {/,./}. This is
enough to prove (2.6) for k = l, 2; in the sequel the inequality (2.6) shall be used only
for k = l . We have

ìñ(0) = ìñ((?&)(1 - Ë-×1 ~ Ë)
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and

/- ~ ìñ(0) = ìñ(6#0) + ìñ(0\\) - ì
°Pi °Pj

In the case ó = {/} we use (2.3 a) and (2.4). In the case ó = {i,y} if G[J
0 and G^ are

nonempty we have from (2.3 b)

and then we can use Lemma 2.2.
In the general case, from

it easily follows

= Ó (-

We notice that some of the G« 's can be empty, but if they are not, they are cosets of
Gg. We apply (2.2) to G?:

ìñ(ï;) = Ó ys

ycS\<r

We get, interchanging the order of summation on á and ã

- Ó ñ™*í-2Ñã Ó (-À) |â|êóï:é
GP

where we have used that (G*)£ = (G$)° s ó n y = 0. In order to prove (2.5) it suffices
to prove that V ó c S

(2.7) Ó (-À) | â |é*·;é^ï
á c: ó

where we have put F= G&. The set A = {a c: a|F<? ö 0} is a subgroup of Ùó since
FQ is a group and

If ^ = {0} (2.7) is trivially true. If \A\ > 2 we put A+ = {ae^||a| is even} and
A _ = A \A + . If A _ = 0 (2.7) is again trivially true. If Ë _ Ö 0, then Ë _ is a coset of
A + ; hence | ̂ 4 + 1 = | A _ |; since all the sets F* , á e ËÉ have the same cardinality, we get

Ó é*?é= Ó É ^ Ã É
aeA+ &eA-

and this concludes the proof of eq. 2.7.
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In order to prove (2.6) we use

d ^ d

407

_ = „ _ _
dx

The sequences (i1, ..., 4) with at least one overlapping give a null contribution to
the sum because for any event E

-" (£) = 0 , V « > 2 .

Hence

- Umdx

and (2.5) implies (2.6).

The following proposition is a weaker version of an inequality which we shall prove in
the next section. Nevertheless we give here an independent proof of i t because we
think that the simple proof given here is more transparent and it could serve s an
Illustration of the intuitive meaning of the order we have introduced between
measures.

Proposition 2.2. If F and G are two subgroups of Qs and ÷ e [0, |] then

In order to prove this proposition we need the following definitions. If {/, j} e S let x

be the restriction of ì÷ to sx{i j } and let vx be the probability measure on Qtj defined
by

v,(0,0) = l -x, v,(l, 1) = x, v,(0,1) = v,(l,0) = 0 .

We define ì% the product measure ì÷ ÷ í÷. ÉÚÁ and A' are disjoint subsets mapped by
a one to one mapping, one can naturally define, using the above defmition, the
measure ì*·Á>.

Lemma 2.3. If G is a subgroup ofQs and ÷ E [0, |] then

(2.8) ji«(G) >
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Proof. We have

ì÷(0) = (l - ×)2

- ì÷(0) = x(l - x)\jJix(G&) -l· ì÷(Ï{\) - ì÷(Ï&) - ì,

and, using Lemma 2.2 the lemma follows.

It is easy to convince oneself that one can extend this lemma to the measure ì÷'Á ': if
G is a group

(2.9) ìúÁ'(0}>ì÷(0}.

In order to prove Proposition 2.2, we consider a copy 5" of S, the Bernoulli measure
ì÷ on s,, copy of ì÷, and the measure x on i2s ÷ s, given by ì÷ ÷ ì^. Given the two
subgroups Fand G, if F' is the copy of Fin Qs,, G ÷ F is a subgroup of i2s ÷ £2S, and
one obviously gets

It is easy to check that

Inequality (2.9) for the group G x F' completes the proof.

3. The case of conditioned Bernoulli measures

In this section we complete the proof of Theorem 1.1 by proving that the Bernoulli
measures conditioned to a group are G-regular and G-ordered. These properties are
both a consequence of the following proposition.

Proposition 3.1. Lei p 6 [0, |]s. IfGisa subgroup ofQs and H and K are two cosets of
G, then

(3.1) ìñ(0)ìñ(Ç · K) > ìñ(Ç)ìñ(Ê) ;

//G! and G2 are subgroups, then

(3.2) ìñ(àé · 02)ìñ(0, nG2) > ìñ(0,)ìñ(Ï2) .

If G is a group and p e [0, ̂ ]s we put V ó c S

G(n\ =(3.3) v

Eq. (2.2) implies that vp is a probability measure on Qs.

Lemma 3.1. The measure vp is F.K.G.
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Proof. As we remarked, it is enough to prove that the measure v% satisfies the
inequality (l .2), and for this we only need to prove that for any group G

We first consider the case ó^ çó2 = 0. Then Gg1™2 = G and so we need to prove

(3.5) |G51U<T2| |G| > |GoM |Go2 | .

We have

I^O1 l = Ó É^0á2 2 !

\G\ = Ó Ó É ó;,1;/1
«é C (Ôé «2 c "2

where some of the G's can be empty. The ones that are not empty are cosets of the
group Goif2 and applying (2.3b) and (2.3c) we get Voc l9 a2

G£ *02 Ö 0, GoJ^2 ö 0 => G^1^2 = G%1Q2 ' G^l?2 Ö 0

and

Using this inequality we get

l /"¼º l l S^ff-y l V* V l /^ffiffi l l /^ff\ffj l| G o i | G o l = L L l^oiz MGeio l
áú c <Ti «2 er <T2

Since (?5éõ"2 = GSO"2, we get (3.5).
We now consider the case ffj n ó2 = ô ö 0. We apply (3.5) to GO in place of G, and

to TJ = ó^ô, ô2 = ó2\ô, s ôéçô2 = 0. We get

We notice that Q = G^"\ G^ut2 = G51U<72, G^ = Gg1, G5O2 = Gg2 and this
completes the proof of the lemma.

Proof of Proposition 3.1. We first prove eq. (3.1). From eq. (2.2) and (3.3) it is

~ s ' \G°0\

Using the inequality
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which is again a particular case of (2.3c), we get

= Ó

where

(3.8) ÷.(ó) = ĵ j

and Ev denotes the expectation with respect to vf. The functions ÷Ç and ÷ê, that take
only the values 0 and l, are both decreasing in the order by inclusion of the subsets of
S. As recalled in See. l, this is sufficient by [2] to conclude that

The proof of (3.1) is completed by observing that

We now prove inequality (3.2). Put G = Gir\G2. By Def. (3.3)

ìñ(0, · G2) _ y 0 J(CVG2)g|
-£s

r() \G'0\

- ñ IG5I '
where we have used the inclusion, which easily follows from the definitions,

(3.9) (G, - G2Y0 z> (GM - (G2Y0 .

We now remark that for any two groups F and G

(3.10) |F

If Fr\G = {0}, \F· G\ = \F\\G\ and the equation is trivially true. In general the
remark can be proved by applying the previous equality to the quotient groups of F,
G and F - G with respect to Fn G.

Using (3.10) and the easy equality (Gi)Sn(G2)o = G% we get

) > y vq r . l(Gi)gl

" - p i ; IGSI
Weput
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and we observe that ç^ is a decreasing function of ó. It suffices to prove that if
ó' = ó u {/}, i 6 5, then ç± (ó') < ç^ (ó). For this it is enough to prove the inequality

(3.11) I
By using the inequalities

1(^)51 = 1(01)51 + l (Gi)5'i l

|Gg| = |G5'| + |GSil

the inequality (3.11) can be written

(3.12) \(Gt \\G&\<\(GM\\\Gt\.

If G5i = 0 the equation is trivially true. Suppose GQ{ ö 0. Then GQ{ is a coset of
GOO = GQ ', and so it has the same cardinality. Furthermore, since G c G l9 we have
also (GJSi * 0; hence (Gi)oi is a coset of (GJSo = (^i)o so that (3.12) holds s an
equality. This proves the observation.

The proof of (3.2) can now be achieved exactly s the one of (3.1).

We observe that (3.2) is at same time an improvement of Proposition 2.2 and
a generalization of the inequality (1.2) for Bernoulli measures. In fact the cylinder
obtained by putting equal to zero all the spins in a given subset ó of -S is a subgroup of
Qs\ if the subgroups Gl9 G2 are obtained in this way from the subsets óÀ 9 ó2 the
inequality (3.2) reduces to (1.2).

Proposition 3.2. If F and G are groups and H is a coset of G, V/? e [0, |]s

P.») -

Proof. From

and analogous equation for ìñ(Ç), we get, performing the derivative,

We can apply (3.1) because H{ = HQ - G\ and this proves eq. 3.13.
Inequality (3.14) follows easily from inequality (3.13) and the remark that there are

n cosets of G n F, H^ , . . . , //„, such that
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and so

Proofof Theorem L L The G-regularity of the measure ì÷ was already proved in sec.
2. If Fis a subgroup of s, by using inequality (3.2), we get

i 2

Since (Gj n F) · (G2 n F) is a subgroup of F, we get the G-regularity of ì÷ ( \ F). The
G-monotonicity of ì÷ is a particular case of Proposition 2.1. The strong
G-monotonicity of ì÷ and ìË( |F) is a direct consequence of inequality (3.14).

4. Applications to statistical mechanics

The aim of this section is to show that some Statistical Mechanical inequalities are
a particular case of the results of the preceding section.

We first consider the nearest neighbour (n.n.) Ising model at zero magnetic field
and + l boundary conditions; for sake of simplicity we recall the definitions we need
in the two dimensional case. The space of configurations is { — l, l}"1 where A is
a square subset of Z2 and the spins on the sites of ä A, the external boundary of Ë, are
put to be equal to l . For any se {~l,l}Aa contour configuration ys can be defined in
the following way. For any pair of n.n. we consider the unit bond that separates them;
if we denote it by c, the pair is denoted by {c1? c2}. We put

ys is the element of {0, 1}C given by

, 0 , if s(ci) = s

The set of contour configurations is

(4.2) Ã = {y e {0, l}c|y = ys for some s e (0, l}'1}.

It is easy to recognize that, denoting by st the pointwise ordinary product of the spin
configurations s and t (while the dot denotes the Symmetrie diiference) one has

(4.3) ys · y, = yst.

Equality (4.3) immediately implies that Ã is a subgroup of {0, l }c. The Gibbs measure
ì^â is defined assigning to any s e { — l, \}Ë the weight

e ^cec 1

This weight is proportional to
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where \ys\ is the cardinality of ys. Hence ì^â is a Bernoulli measure of parameter
x = (l + e-

 20) - ! g- 2/* e [0, l /2] conditioned to the subgroup Ã and the results of the
preceding section can be applied.

As an example, let us consider for any A c. A the set of contour configurations ÃÁ,
corresponding to the set of spin configurations EA = (s\s(i) = s(j)Vi,jeA}. By
using (4.3) it is immediate to see that ÃÁ is a subgroup of Ã. Since

(4.4) ì$.ñ(ÅÁ) = ì÷(ÃÁ\Ã)9

the G-monotonicity of ì÷ ( | Ã) reduces in this case to the well known monotonicity in
â of ì^â(ÅÁ). By using the strong G-monotonicity of ì÷( |Ã) we get the
monotonocity in â of the ratios ì^â(ÅÁ)/ ìï>â(ÅÂ) for any B^>A. The same
arguments work if one considers periodic or open boundary conditions.

As another example we consider the Gibbs measure ì^â defined by the weight

where A be a finite set, B = {b a A \ b = {bi9 b2}} and / = (Jb, b e B) is any vector
with Jb > 0. We now show how the Griffiths' inequalities are a particular case of
Proposition (3.1). We consider a subset A ofA and let SA = Y[ieAs(i)9 there is a nice
representation of (sAyj9 the expectation of SA with respect to the Gibbs measure, in
terms of the Bernoulli measure ìñ where pb — e~ Jbsinh Jb e [0, 1/2], [5, 7]: if one

dn = {ieA\ £ n(b) is odd}
ieb

G = « e 0 , l | « = 0

then

(4.5) <ß÷>, = ú

11 is easy to see that G is a group and that HA is one of its cosets. Furthermore if A and
B are disjoint we have

and it is easy to see that HA^B = HA - HB. We apply (3.1) and get the Griffiths'
inequalities

In the gauge theories on the lattice the following model is considered [6]. For each
bond b of a rf-dimensional, say d = 3, square lattice it is associated a spin variable
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ab E {— l, l}, considered s an element of the group Z2. The measure is defined by the
weight

P beP

where P runs over all the plaquettes. This measure can be obtained from a Bernoulli
measure on the plaquettes variables cope{ —1,1}, conditioned to the group
Ðï{ÃÚÑåïùñ = *}' where â runs over the cubes of the lattice. Hence also to this
model the results of the preceding section apply exactly s in the previous cases.
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