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Percolation and Phase Transitions in the Ising Model
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Abstract. We give a description of the mechanism of phase transitions in the
Ising model, pointing out the connection between the spontaneous magneti-
zation and the existence of infinite clusters of "up" and "down" spins. The
picture is more complete in the two-dimensional Ising model, where we can
also use a generalized version of a result by Miyamoto.

1. Introduction

Percolation problems have been mostly studied for non-interacting systems (for
a general review, see for example [1]). Only recently other cases have been con-
sidered: rigorous results are proved in [2], where site percolation problems for
Ising spins on Bethe lattices are solved, and in [3], where Miyamoto extends to
a class of interacting systems a classical result stated by Harris [4] for the random
bond percolation problem on the plane square lattice.

In this paper we consider only site percolation problems, because in our
picture they are more strictly related to the Ising model than the bond ones.

In Section 2 we consider the v-dimensional Ising model. We prove that, at
zero external field and for T < Tc, percolation probability and spontaneous mag-
netization are related by an inequality.

We next limit ourselves to the case v = 2. We first give a further extension of
the theorem proved in [3] under the condition of "symmetry of configuration",
observing that it has a natural generalization to the non-symmetric cases. Further-
more, we prefer to reformulate the statement for the site percolation problem
using the matching graph of the plane square lattice rather than its dual graph.
This is done in Section 3.

Finally, in Section 4 we simultaneously use the results of the preceding sec-
tions. We show that, at zero external field, in the single phase region there are
no infinite clusters, while in the two phases region each pure phase is charac-
terized by the existence of an infinite cluster of the corresponding sign.
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2, Percolation and Spontaneous Magnetization

In this section we obtain an inequality relating percolation probability and spon-
taneous magnetization in the v-dimensional Ising model. Before stating this
result, we introduce some definition and notations.

Z v is the v-dimensional lattice of the points with integral coordinates in Rv.
We put Ω = {-1, + 1 }z\ and ΩΛ = {-1, + 1 }Λ, for every finite set A C Z v . We

consider in Ω the partial ordering ^ defined by setting ωi^ω2 if and only if
ωί(x)^ω2(x\ for all xeZv. We also suppose that Ω is endowed with the topology
obtained as product of the discrete topologies on the factors, and we call J* the
σ-algebra of Borel sets in Ω.

Two points in Z v which differ only by one unit in one coordinate are called
adjacent points. A chain is a finite sequence (xl9.. .,xj of distinct points in Z v such
that xi_ί and xt are adjacent for every ίe{2,...,n}. A subset Y c Z v is connected
if, for all pairs x, y of points in Y, there is a chain formed by points in Y, having
x, y as terminal points. The boundary of 7 CZV is the set dY of all points in ZV\Y
that are adjacent to at least one point in Y

If ωeΩ, a ( + )-cluster [(— )-cluster] in ω will be a maximal connected com-
ponent of ω - 1 ( + l ) [ω~ 1(— 1)]. We indicate infinite clusters by adding the
symbol oo between the brackets.

Let μ be a probability measure defined on JLConsider the events C j = {ωeΩ\0
belongs to an (oo, ±)-cluster in ω}; E± = {ωeΩ\ω(O}= ±1}; where 0 is the
origin (0,...,0)eZv.

The percolation probability1 for "up" or "down" spins is defined by JR(± μ) =
μ(Cj), and the "magnetization" is defined by M(μ) = μ(E+) — μ(E~).

We are interested in the ferromagnetic Ising model: in particular we shall
consider the Gibbs measures μ+ and μ_ obtained by choosing respectively
( +^boundary conditions and ( —)-boundary conditions.

Our main result is the following

Theorem 1. For a ferromagnetic Ising model at zero external field {h = o) and below
the critical temperature (T<TC) the following inequality holds: \M(μ+)\^R(±; μ+).

Proof Let Γ be the family of all finite connected subset of Z v containing the
origin. For a fixed YeΓ we consider a v-dimensional cube Λo containing YudY,
and the set Λ = ΛovdΛo.

Let us denote by μΛ the Gibbs measure on ΩΛ with zero boundary conditions,
and by Cγ\βγ~\ the set of configurations ωeΩΛ such that Y is a ( + )-cluster
[( — )-cluster] in ω.

Finally, we set B± = {ωeΩΛ\ω(x)= ± 1 , Vxe<2/l0}.
Then, we have:

Note that our definition differs from the usual one, that is P(±;μ) = μ(C*\E±) = R(±;μ)/μ(E±)



Percolation and the Ising Model 317

Let us call CQYDCY the set of configurations ωeΩΛ such that ω(x)= — 1, for
all xe dY. Since μΛ is invariant under interchange of — 1 and + 1 , and one-step
Markov, we have :

= = =

μ^(Cί) μA(B-\Cί) μΛ(B-\C^γ) μΛ(B
On the other hand, the FKG inequality [5] and the configurational symmetry

of μΛ give:

μΛ(B+ nC^γ) ^μΛ(B + )μΛ(CaY) = μA(B-)μA(C ;Ύ) ^μA(B~ nC^γ) (2.1)

where we have used the fact that the characteristic function χB+ is increasing,
while χB- and χc^γ are decreasing.

From (2.1) it follows that

This relation holds for all Λ0D Y<uδY, so that in the limit /t0->oo, one obtain:

A i + ( C J ) S M C ? ) . (2.2)

Now we also have:

YeΓ

This equality and the analogous one, obtained by interchange of + and —,
give:

= Σ [μ+(C?)-μ-(C?)] + i " + ( C : ) - μ - ( O . (2.3)
YeΓ

Then, (2.2) and (2.3) imply M ( μ + ) ^ R ( + μ+).
Changing all signs, we can prove that | M ( μ _ ) | ^ R ( - ; μ _ ) and the theorem
follows.

3. Non-Coexistence of Infinite Clusters in the Plane Square Lattice

In this section we limit ourselves to the case v = 2. Besides the definitions and
notations of Section 2, we also need the following further definitions.

For every X c Z 2 , we call &KC& the σ-algebra generated by the functions
ω->ω(x), xeK. We put &O0 = nκ@lKc, where K runs over the class of all finite
subsets of Z 2 .

A circuit in Z 2 is a chain (xl9...9xv) such that xt and Xj are adjacent only if
\i—j\ is 1 or n — 1.

Two points in Z 2 that are adjacent or such that both their coordinates differ
by one unit are called (*)-adjacent points. We define (*)-chains, (*)-circuits,
(*)-connection, (*)-boundary, and ( + ,*)-clusters in the same way as chains,
circuits, connection, boundary, and (±)-clusters, only replacing adjacency with
(*)-adjacency.
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Note that every connected [(*)-connected] finite subset of Z 2 is "surrounded"
by a (*)-circuit [circuit] contained in its boundary [(*)-boundary].

Let us call E and E* the sets of segments in R2 which we obtain connecting
all pairs of points in Z 2 that are respectively adjacent and (*)-adjacent. In the
language of graph theory, the graph (Z2, £*) is the matching graph of the simple
planar graph (Z2

5 E).
Now we can prove the following:

Theorem 2. If μ is a translationally invariant equilibrium measure for a ferro-
magnetic two-dimensional Ising model at zero external field and μ is extremal in
the set of all equilibrium measures, then:

First we observe that the hypotheses of the theorem are equivalent to the following
set of conditions (see [5, 6, 7]):

a) spatial symmetry: μ is invariant under translations, rotations by right angles
and reflections in the axes,

b) μ is everywhere dense,
c) έffl^ is trivial if it is measured by μ,
d) the FKG inequality holds for μ,
e) μ is one-step Markov,
f) configurational symmetry of conditional probabilities: if C is a cylinder with

base A and B is a boundary condition on a (*)-circuit surrounding A, μ(C\B) =
μ(C\ΈΓ), where tilde means interchange of + and —.

The theorem can be proved following in the essential lines the procedure of
Ref. [3] and [4]. The main changes with respect to Miyamoto's proof are due
to the weakening of configurational symmetry (which allows us to extend the
theorem to the region T < Tc) and to an oversight that is contained in [3] in the
proof of Lemma 4 (namely an incorrect use of the Markov property). Further-
more, where (as in Lemmata 1 and 2) the proof is essentially the same as in [3]
the site terminology (necessary in order to give a description of the usual Ising
model in terms of an one-step two dimensional Markov process) allows us to
simplify the technical details. So, for the convenience of the reader, we give below
the complete proof of the theorem.

It is known ([9, 10]) that the measures satisfying the hypotheses of Theorem 2
are at most two, namely the measures μ+ and μ__. (These measures in the region
T^TC coincide); we prove the theorem in the case μ = μ+ in the case μ = μ_ the
proof is obviously the same.

Before proving the theorem we need some lemmata.

Lemma 1. Call R(π/2, +;μ+) the μ+-measure of the event that 0 belongs to an
infinite connected component of ω~1(±l)n{x^0;y^0}.

Then we have :

R(π/2,-;μ+) = 0.

Proof It is easy to check that R(π/2, - μ+)^R(π/2, + μ+) so that it suffices to
demonstrate that R(π/2, + μ+)>0 implies R(π/2, - μ+) = 0.
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For a positive integer j , let Ej be the event that the point (0, j) belongs to an
infinite connected component of ω~ 1(+ l)n{x^0; y ^j}.

Condition (a) implies μ+(Ej) = R(π/2, + μ+).
Then, by condition (c), we can use Birkhoffs ergodic theorem, which assures

that frequency of occurrence of El9 E2,... is equal to R(π/2, + μ+) μ+-a.e.
Therefore, infinitely many E/s occur μ+-a.e.
Assume that the event Ej occurs. For a positive integer k let Bk be the event

that ω(υ)= — 1 for each point v on the line {x = k, O^y^j}. Since μ+(Bk)>0 by
(b), Birkoffs ergodic theorem implies that infinitely many Bk's occur μ+-a.e., so
that the infinite connected component appearing in the event Ej crosses the x-axis
μ+-a.e. Thus, we have μ+-a.e. infinitely many ( + )-chains connecting points on
the x-axis to points on the y-axis, each of which blocks any ( — )-chain in
{x^O,y^O} starting from the origin. This proves that R(π/2, — ;μ + ) = 0.

Remark. For any point υ in {x ^ 0, y ^ 0} the event X^ that v belongs to an infinite
connected component of ω " 1 ( + l ) n { x ^ 0 , y ^ O } has μ+-measure zero if and
only if R(π/2, ± ;μ + ) = 0. Indeed, if Q± is the event that v and 0 are connected
in ω~ 1 (±l)n{x^0; > y^0} , using (b) and (d) we have:

We shall omit an analogous remark after Lemma 2.

Lemma 2. // we call R(π, ± μ+) the μ+-measure of the event that 0 belongs to
an infinite connected component of ω~1(±l)n{y^0}, we have:

Proof Let us suppose jR(π, — μ + ) > 0 . For a positive integer j , let Wj be the event
that the point (/, 0) belongs to an infinite connected component of ω~~ (— l)n{y ^ 0}
and to an infinite connected component of ω~1(— l)n{y^0}. By properties (a)
and (d), we have μ+(Wj) ^ R2 (π, — μ+) > 0. Then, Birkoffs ergodic theorem implies
that infinitely many P^ 's occur μ+-a.e. Assume that the event Wj occurs. Lemma 1
and the remark prove that the infinite connected components which appear in
Wj cross μ+-a.e. the y-axis respectively above and below the origin. Hence, we
have, μ+-a.e., infinitely many ( — )-chains connecting points above and below the
j -axis, each of that blocks any ( + )-chain in {y^0} starting from the origin. This
proves that jR(π, + ;μ + ) = 0. On the other hand we have R(π, + ;μ+)^R(π, — ;μ+),
so that R(π, —;μ+) = 0 and this concludes the proof.

A ( ± , *)-chain which starts at a point on the y-axis, ends at a point on the
y-axis below the starting point, and all points of which are in {x^0} is called
( + )-half-circuit. We call box a square with its centre in the origin.

Lemma 3. There exists an increasing sequence {Vn}™=1 of boxes such that for all n
in (Vn+1Wn)n{xέt0} there is with μ+-measure >2~2 a ( + )-half-circuit (*)-con-
nected in ω~ί(l)n(Vn+ί\Vn)n{x^0} with a side of Vn+1 and, with μ+-measure
>2~2,a(-\-)-half-circuit (^-connected in the same set with a side of Vn.

Proof First, we prove that the event that for any box V there exists a ( +^half-
circuit surrounding the origin and lying in {x^0}\F has μ+-measure 1.
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Since R(π, — μ+) = 0, there is μ+-a.e. at least one ( + )-half-circuit surround-
ing each point of the y-axis. The union of all the ( + )-circuits surrounding (0,7)
can be divided into connected components C{, CJ

2,.... For the measure μ+ con-
ditioned to the event that these components are infinitely many, the statement
above is obviously true; so we can suppose that the components C{, CJ

2,... are
finitely many. Then, there exists a maximal component CJ

M.
If CJ

MnCJM = 0 for j φ / , there is a ( —, oo)-cluster in {x^O} starting from a
point between (0,;) and (0,/), and this is absurd by property (a) and Lemma 2.
Therefore, for all;, there exists a common maximal component CM. dCMn{x^0}
can contain finite clusters only, so that it is easy to realize that in CM there are
infinitely many ( + )-half-circuits lying in {x^0}\F Choosing arbitrarily a box
F l 5 we can construct a sequence {^}£i of boxes such that, for all Z, with prob-
ability >l/2 there exists a ( + )-half-circuit surrounding the origin and lying in
{x'^.0}n(Vl+1\Vl). For a fixed Z, if none of the above-mentioned ( + )-half-circuits
is (*)-connected in ω - 1 ( l ) with a side of F / + 1 [ F / ] , there exists a ( — )-half-circuit
surrounding them [surrounded by them] lying in {x^0}n(Fj+ 1\F z), and (^-con-
nected in ω - 1 ( l ) with a side of Vι + 1 [FJ.

Using correlation inequalities ([8]), it is easy to see that the Lemma holds.

Lemma 4. There exists an increasing sequence {Bn}™= 1 of boxes such that, for all n,
in Bn+i\Bn there is a (*, + )-circuit surrounding the origin with μ+-probability

3 O \

Proof We put Bn = F3n, where the Vn are the boxes of Lemma 3; for each n we
choose an integer in such that the point (0, in) is in V3n + 2W3n+ ιCBn+ ^\Bn.

Let C 1 be the event that in Bn + ^\Bn there is a (*, ±)-circuit surrounding the
origin.

If S[_s] is a half-circuit in Bn + 1\V3n+2[V3n + 1\Bn~], we call £(S)[£(s)] the event
that S[s] is the maximal [minimal] ( + )-half-circuit in Bn + 1\V3n+2lV3n+]\Bn]
and that it is (*)-connected in ω~1(l)n{x^0} with a side of Bn+1\_Bn~].

Define also:

Sr = Sn{x>0}; sr = sn{x>0}; So = Sn{x = 0}; so = sn{x = 0}.

Let ^ [ s j be the reflection of Srlsr~] in the y-axis, St = SuSl9 st = sust and *Su[sJ
the union of St [s j and its interior. Let D(S) be the event that (0, in) is (*)-connected
in ω~ \l)n(S^Bn) with S and D(s) the event that (0, in) is (*)-connected in ω~ 1(l)n
((Bn+ί\su)ust) with 5. Further we put DM=us(E(S)nD(S)); Dm=us(E(^D(s)).
We note that the sets in the unions are pairwise disjoint and DM, Dm are positive
events (i.e. their characteristic functions are increasing). Finally we define

A is obviously a positive event too.
We have

μ+(A)^ Σ^(AnESs)= Σμ+(A\ESs)μ+(ESs) (3.1)
S,s S,s

where

ESs = E(S)nE(s).
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If we call C| s the event that in (S t t\sjus f there is a (*, ±)-circuit surrounding the
origin and E*Ss the intersection of ESs with the event that a given configuration α
realizes on Stusl9 and if E'Ss is the event obtained by choosing α such that ω(υ) = — 1
for all veStush by FKG inequality ([5, 8]) we have:

(3.2)

where

and E | s is the event obtained by dropping in E'Ss the maximality and minimality
conditions. The last equality holds by the Markov property. We call ^ [ F ^ J
the event that in is surrounded in (S^\su)ust by a ( + , *)-circuit [(-,*)-circuit]
(which may be also coincident with in), not surrounding the origin, which is
(*)-connected in ω " 1(1)[ω~ *( — 1)] with Sus [St u s j .

It is easy to check that E^s = EgsuEss where

Let us define

Ess={coeΩ\ω(x)=ί, VxeSrusr; ω(x)= —

Then it easily follows

by using properties (a) and (f), and the relation ([8]):

This inequality is satisfied by the measures μi(') = μ+('\E*s) a n d μ2( *) = ̂ +(*l^s s)
because the conditioning w.r.t. the event £fs introduces an external field larger
than the one introduced by the conditioning w.r.t. the event E%s.

Hence

μ+(ASs\E&)^μΛAss\Ei). (3.3)

On the other hand we have

^μ+(()()\&£)

Applying again the Markov property and FKG inequality we get

(3-4)
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where H is the event that ίn belongs to a ( + , *, oo)-cluster. Collecting together
(3.1), (3.2), (3.3), (3.4), we have:

Σ μ+) (3.5)
S,s

where, in the last inequality, we have used Lemma 3, the FKG inequality and the
remark that u s £ s and u s £ s are positive events.

(3.5) and the definition of A imply that, either

μ+) (3.6)

(and in this case the lemma is proven) or

If (3.6) holds we can suppose that

μ + ) (3.7)

(otherwise an analogous inequality holds for Dm and the following part of the
proof should be the same).

If (3.7) holds, by spatial symmetry, the same inequality holds for the event
D'M, obtained from DM by interchanging the point (0, in) with the point (0, — in),
so that, by FKG inequality, we get

μ+(DMnD'M)^2-14tR(+;μ + )y. (3.8)

If the event DMr\D'M occurs, there exists a ( + ,*) chain connecting (0, /„) and
(0, —ίn) in Bn+1\Bn; by spatial symmetry and (3.8) such a chain exists and is
clockwise with a probability bigger than 2 " 1 5 [ K ( + μ + ) ] 2 .

Finally with a probability bigger than 2 ~ 3 0 [ K ( + μ + ) ] 4 both clockwise and
anti-clockwise ( + , *) chains exist connecting (0, in) and (0, — ίn)9 so that the
required (*)-circuit exists.

Proof of the Theorem 2. If R( + , μ+) > 0, Lemma 4 holds with a positive value of p
and, using the i^-mixing property of μ+, one can prove that a ( + , *)-circuit
surrounding the origin exists μ+-a.e.; hence R( —, μ + ) = 0. For details see Ref. [3].

4. Percolation in the Two-dimensional Ising Model

In this section we examine the consequence of Theorems 1 and 2 in the two-
dimensional Ising model.

Proposition 1. In a ferromagnetic Ising model at zero external field for T^TC

there are no infinite clusters, while for T<TC in each pure phase there is a.e. an
infinite cluster of the corresponding sign and no infinite clusters of the opposite sign.

Proof For T^TC μ+=μ_=μ, so that Theorem 2 implies

We are indebted to D. Ruelle for having suggested these points
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and this proves the first part of the proposition; the second part is an immediate
consequence of Theorems 1 and 2.

In the case /iΦO we can only state that:

Proposition 2. If μh is the translatίonally invariant equilibrium measure for a fer-
romagnetic Ising model at external field

for T<TC there is μh-a.e. an infinite cluster of the same sign as the external field
and no infinite clusters of opposite sign.

Proof It is an obvious consequence of Proposition 1 and of the remark that
R( + ,μh) is an increasing function of h (as easily follows from the inequalities
stated in [8])2.

We remark that the rotation in variance is not necessary in proving Theorem 2,
so that the theorem can be extended to the anysotropic Ising model2.

In this case the only change in the proof should be that one must define,
instead of R(π, ± μ\ the four quantities Rx(π, ± μ) and Ry(π9 ± μ) (with an
obvious meaning of the symbols) and Lemma 2 should assume the form
Rx(π,—;μ+)Ry(π,—;μ+) = 0; however, once one has chosen the axis corre-
sponding to a null R the other proofs remain unaltered.

Finally, we note that, with some technical changes, Theorem 2 can be easily
extended to "sufficiently" regular planar graphs.
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